10.1002/cctc.201801146
ChemCatChem
FULL PAPER
Transmission electron microscope (TEM) image was taken on a JEOL-
2100 electron microscope operating at an accelerating voltage of 200 kV.
The samples were characterized by X-ray powder diffraction (XRD) by a
DX-2700 diffractometer (Dandong Haoyuan Instrument Co. Ltd. China).
The thickness was assessed using a tapping mode atomic force
microscope (AFM) (Multimode-8; Bruker; USA). Fourier transform
[3] L. Yang, S. Luo, Y. Li, Y. Xiao, Q. Kang, Q. Cai, Environ. Sci. Technol. 2010,
44, 7641-7646.
[4] J. Feng, L. Su, Y. Ma, C. Ren, Q. Guo, X. Chen, Chem. Eng. J. 2013, 221,
16-24.
[5] M. Rocha, P. Costa, C. Sousa, C. Pereira, J. Rodríguez-Borges, C. Freire, J.
Catal. 2018, 361, 143-155.
infrared (FTIR) spectra were recorded on
a
Nicolet 5700
[6] J. Lee, J. Park, H. Song, Adv. Mater. 2008, 20, 1523-1528.
[7] J. Das, M. Aziz, H. Yang, J. Am. Chem. Soc. 2006, 128, 16022-16023.
[8] C. Lin, K. Tao, D. Hua, Z. Ma, S. Zhou, Molecules 2013, 18, 12609-
12620.
[9] N. Pradhan, A. Pal, T. Pal, Colloids Surf., A 2002, 196, 247-257.
[10] Chang, Y. Luo, W. Lu, X. Qin, A. Asiri, A. Al-Youbi, X. Sun, Catal.
Sci. Technol. 2012, 2, 800-806.
[11] M. Mohamed, M. Sharif, Appl. Catal. B: Environ. 2013, 142, 432-441.
[12] G. Falcone, O. Giuffrè, S. Sammartano, J. Mol. Liq. 2011, 159, 146-
151.
[13] S. Bawane, S. Sawant, Appl. Catal. A 2015, 293, 162-170.
[14] A. Saha, B. Ranu, J. Org. Chem. 2008, 73, 6867-6870.
[15] A. Rahman, S. Jonnalagadda, Catal. Lett. 2008, 123, 264-268.
[16] F. Cardenas-Lizana, S. Gomez-Quero, M. Keane, Catal. Commun.
2008, 9, 475-481.
spectrophotometer using the standard KBr disk method. Nitrogen
sorption measurements were carried out at −196 °C on a micromeritics
ASAP 2020 analyzer, and the specific surface area (SBET) was evaluated
using the Brunauer-Emmett-Teller (BET) method. UV-vis absorption
spectra and diffuse reflectance spectra (DRS) were recorded on a
Shimadzu 2450 UV-vis spectrometer with an integrating sphere using
BaSO4 as the reference. The reaction process was monitored by high-
performance liquid chromatography (HPLC; Shimadzu, LC-20AT). The
electrochemical tests were performed on a CHI660E electrochemical
workstation (Chenhua, Shanghai, China). The zeta potentials of different
samples were measured with Malvern Nano ZS90.
3 Photocatalytic tests
[17] A. Vass, J. Dudás, J. Tóth, R. Varma, Tetrahedron Lett. 2001, 42,
5347-5349.
The photo-reduction activities of photocatalysts were evaluated by the
reduction of PNP in aqueous solution under visible light irradiation using
a 300 W xenon lamp (HSX-F300, Beijing NBet) with a 420 nm cutoff filter
as the light source. In each experiment, 100 mg of catalyst was added to
an aqueous solution (100 mL) of PNP (5 mg L-1) containing 0.02 M
hydrazine in a beaker. Prior to irradiation, the catalyst was stirred in the
dark for 60 min to ensure the establishment of adsorption-desorption
equilibrium. And the air in reactor was removed by pure N2. At given time
intervals, 3.5 mL of the solution was collected and subsequently
centrifuged to remove the particles. The concentration of solution was
analyzed by measuring the maximum absorbance at 400 nm for p-
nitrophenolate ions through a Shimadzu UV-2450 spectrophotometer.
The TOF is calculated as the number of PAP mass (g) evolved per gram
of total catalyst per unit of time (h): TOF = mPAP/(mcatalyst·t).
[18] S. Cai, H. Duan, H. Rong, D. Wang, L. Li, W. He, Y. Li, ACS Catal.
2013, 3, 608-612.
[19] W. Zhang, F. Tan, W. Wang, X. Qiu, X. Qiao, J. Chen, J. Hazard.
Mater. 2012, 217, 36-42.
[20] S. Saha, A. Pal, S. Kundu, S. Basu, T. Pal, Langmuir 2009, 26,
2885-2893.
[21] W. Dong, S. Cheng, C. Feng, N. Shang, S. Gao, C. Wang, Catal.
Commun. 2017, 90, 70-74.
[22] W. Ye, J. Yu, Y. Zhou, D. Gao, D. Wang, C. Wang, D. Xue, Appl.
Catal. B: Environ. 2016, 181, 371-378.
[23] X. Qiao, Z. Zhang, F. Tian, D. Hou, Z. Tian, D. Li, Q. Zhang, Cryst.
Growth Des. 2017, 17, 3538-3547.
[24] S. Patra, A. Naik, A. Pandey, D. Sen, S. Mazumder, A. Goswami,
Appl. Catal. A 2016, 524, 214-222.
[25] M. Hoffmann, S. Martin, W. Choi, D. Bahnemann, Chem. Rev. 1995, 95,
69-96.
[26] A. Mills, S. Hunte, J. photoch. photobio. A 1997, 108, 1-35.
[27] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M.
Anpo, D. Bahnemann, Chem. Rev. 2014, 114, 9919-9986.
[28] S. Gazi, R. Ananthakrishnan, Appl. Catal. B: Environ. 2011, 105,
317-325.
[29] A. Hernández-Gordillo, M. Arroyo, R. Zanella, V. Rodríguez-
González, J. Hazard. Mater. 2014, 268, 84-91.
[30] C. Castañeda, F. Tzompantzi, R. Gómez, J. Sol-Gel Sci. Techn.
2016, 80, 426-435.
4 Photo-electrochemical measurements
The photo-electrochemical properties were studied on an electrochemical
station (CHI660E, Chenhua, Shanghai, China) linked with computer. The
Ag/AgCl electrode, platinum foil and Na2SO4 (0.2 M) were employed as
reference electrode, counter electrode and electrolyte solution,
respectively. The working electrode was fabricated as follow: 20 mg
catalyst was ultrasonically dispersed in 2 mL distilled water for 0.5 h, and
then the obtained suspension was coated on a 3 cm × 1 cm indium tin
oxide (ITO) glass before drying at 70 oC for 12 h.
[31] T. Wu, P. Wang, J. Qian, Y. Ao, C. Wang, J. Hou, Dalton Trans.
2017, 46, 13793-13801.
[32] Y. Nie, F. Yu, L. Wang, Q. Xing, X. Liu, Y. Pei, S. Suib, Appl. Catal.
B: Environ. 2018, 227, 312-321.
Acknowledgements
[33] J. Zou, L. Wang, J. Luo, Y. Nie, Q. Xing, X. Luo, S. Suib, Appl. Catal.
B: Environ. 2016, 193, 103-109.
[34] H. Shi, G. Chen, C. Zhang, Z. Zou, ACS Catal. 2014, 4, 3637-3643.
[35] M. Marszewski, S. Cao, J. Yu, M. Jaroniec, Mater. Horiz. 2015, 2,
261-278.
This work was financially supported from the financial support
from the Zhejiang Provincial Natural Science Foundation of
China (No. LY17B010004, LY17B050007) and the 521 talent
project of ZSTU.
[36] J. Fu, Y. Tian, B. Chang, F. Xi, X. Dong, J. Mater. Chem. 2012, 22,
21159-21166.
Keywords: Nanosheets
• P-Aminophenol • Photocatalytic
[37] Y. Tian, B. Chang, J. Lu, J. Fu, F. Xi, X. Dong, ACS Appl. Mater.
Interfaces 2013, 5, 7079-7085.
[38] X. Jiang, Q. Xing, X. Luo, F. Li, J. Zou, S. Liu, X. Wang, Appl. Catal.
B: Environ. 2018, 228, 29-38.
[39] G. Zhou, M. Wu, Q. Xing, F. Li, H. Liu, X. Luo, A. Zhang, Appl. Catal.
B: Environ. 2018, 220, 607-614.
Reduction • P-Nitrophenol • Protonated Graphitic Carbon Nitride
[1] K. Ju, E. Rebecca, Mol. Boil. R. 2010, 5, 250-272.
[2] J. Spain, Annu. Rev. Microbiol. 1995, 49, 523-555.
This article is protected by copyright. All rights reserved.