Mendeleev Commun., 2016, 26, 497–499
the hemicarbonate bonded with the coordinatively unsaturated
3
2
1
0
metal cation. The final stage of the reaction, obviously, is the inter-
action of the hemicarbonate with the second methanol molecule
that should afford the target product, DMC.
In conclusion, we prepared a new catalyst on the basis of the
supported SnO2/Al2O3 system promoted with CuCl2, ZnCl2, KF,
which showed the high efficiency in the direct synthesis of DMC
from methanol and CO2.
4
3
2
1
3200
2800
2400
2000
1600
1200
This work was supported by the Russian Science Foundation
(grant no. 14-33-00001).
Wavenumber/cm–1
Figure 2 DRIFT spectra of adsorbed MeOH and CO2 on the sample of
SnO2(Cu,Zn,K)/Al2O3: (1) 17 h after introduction of MeOH at saturated
vapor pressure at 20°C; (2) 10 min after introduction of CO2 at 1 bar and
20°C; (3) after 75 h; (4) after evacuation of the sample at 400°C for 2 h.
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.mencom.2016.11.012.
surface of the catalyst sample was little enriched with Sn com-
pared with the calculated concentration of Sn in the catalyst,
the atomic Sn/Al ratio in the surface and subsurface layers of a
thickness of ~30 Å is 0.134 vs. 0.100. The atomic Cl/Al ratio in
the catalyst is close to the content of Cl in ZnCl2 and CuCl2. The
XPS data point out that copper exists in two electronic states,
Cu2+ and Cu+, on the catalyst surface.
References
1 L. M. Kustov and A. L. Tarasov, Mendeleev Commun., 2014, 24, 349.
2 V. I. Bogdan and L. M. Kustov, Mendeleev Commun., 2015, 25, 446.
3 M. Aresta, A. Dibenedetto and A. Angelini, Chem. Rev., 2014, 114, 1709.
4 W. Wang, S. Wang, X. Ma and J. Gong, Chem. Soc. Rev., 2011, 40, 3703.
5 Y. Izumi, Coord. Chem. Rev., 2013, 257, 171.
6 N.A. M. Razali, K. T. Lee, S. Bhatia andA. R. Mohamed, Renew. Sustain.
Energy Rev., 2012, 16, 4951.
The X-ray diffraction data for the SnO2(Cu,Zn,K)/Al2O3
catalyst obtained show that the XRD pattern contains only two
peaks at 45 and 66°, which are attributed to alumina. No other
peaks were detected, including peaks from SnO2. This points out
to amorphous state of the supported SnO2.
The thermogravimetry analysis of the SnO2(Cu,Zn,K)/Al2O3
catalyst has revealed that during its heating in the inert gas from
20 to 600°C any remarkable structural or phase changes in
the catalyst do not occur. This proves that all oxides and salts
comprised in the catalyst are quite stable and have the constant
composition.
7 E. Leino, P. Maki-Arvela, V. Eta, D. Yu. Murzin, T. Salmi and J.-P.
Mikkola, Appl. Catal., A, 2010, 383, 1.
8 N. S. Isaacs, B. O’Sullivan and C.Verhaelen, Tetrahedron, 1999, 55, 11949.
9 J.-C. Choi, T. Sakakura and T. Sako, J. Am. Chem. Soc., 1999, 121, 3793.
10 K. Tomishige, T. Sakaihori, Y. Ikeda and K. Fujimoto, Catal. Lett., 1999,
58, 225.
11 D. Ballivet-Tkatchenko and A. Dibenedetto, in Carbon Dioxide as
Chemical Feedstock, ed. M.Aresta, Wiley-VCH, Weinheim, 2010, p. 169.
12 A. Dibenedetto, C. Pastore and M. Aresta, Catal. Today, 2006, 115, 88.
13 Y. Yoshida, Y. Arai, S. Kado, K. Kunimori and K. Tomishige, Catal.
Today, 2006, 115, 95.
14 J. Bian, M. Xiao, S. Wang, Y. Lu and Y. Meng, Catal. Commun., 2009,
10, 1142.
15 J. Kizlink, Collect. Czech. Chem. Commun., 1993, 58, 1399.
16 M. Aresta, A. Dibenedetto, C. Pastore, C. Cuocci, B. Aresta, S. Cometa
and E. De Giglio, Catal. Today, 2008, 137, 125.
The data obtained allow us to suggest the mechanism for the
DMC synthesis from methanol and CO2 on the catalyst prepared
in the work (Figure 3).
17 H. J. Hofmann, A. Brandner and P. Claus, Chem. Eng. Technol., 2012,
35, 2140.
18 K. Tomishige, Y. Ikeda, T. Sakaihori and K. Fujimoto, J. Catal., 2000,
192, 355.
19 K. T. Jung and A. T. Bell, J. Catal., 2001, 204, 339.
20 S. H. Zhong, L. L. Kong, H. S. Li and X. F. Xiao, Ranliao Huaxue
Xuebao, 2002, 30, 454.
21 K. Tomishige and K. Kunimori, Appl. Catal., A, 2002, 237, 103.
22 K. Tomishige, Y. Furusawa, Y. Ikeda, M. Asadullah and K. Fujimoto,
Catal. Lett., 2011, 76, 71.
23 S. Wada, K. Oka, K. Watanabe and Y. Izumi, Front. Chem., 2013, 1, 8.
24 C. F. Li and S. H. Zhong, Catal. Today, 2003, 82, 83.
25 H. Chen, S. Wang, M. Xiao, D. Han, Y. Lu andY. Meng, Chin. J. Chem.
Eng., 2012, 20, 906.
26 J. Bian, M. Xiao, S. Wang, X. Wang, Y. Lu andY. Meng, Chem. Eng. J.,
2009, 147, 287.
In our opinion, the reaction proceeds through two alternative
paths, that depends on what substance, methanol or CO2, is
adsorbed on the catalyst at first. If it is methanol, the reaction
starts from the formation of methoxy groups bonded with the
metal cations (path a). Alternatively, if CO2 is the first to chemo-
sorb, one can expect the generation of the carbonyl or carboxyl
compounds (path b). The further stages of the reaction may
consist of the interaction of the surface compounds with the
second reactant, MeOH or CO2, coming from the gas phase. Note
that for both pathways the key intermediate is considered to be
H
MeOH
Me
O
O
Me
O
OH
path a
M
M
27 A. Davydov, Molecular Spectroscopy of Oxide Catalyst Surfaces, Wiley,
Hoboken, 2003.
O
CO2
28 K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination
Complexes, Part A: Theory and Applications in Inorganic Chemistry,
Wiley, New York, 1997.
29 A. A. Davydov, Infrared Spectroscopy of Adsorbed Species on the Surface
of Transition Metal Oxides, Wiley, Chichester, 1990.
30 G. Busca and V. Lorenzelli, Mater. Chem., 1982, 7, 89.
31 M. L. Hair, Infrared Spectroscopy in Surface Chemistry, Marcel Dekker,
New York, 1967.
32 A. A. Davydov and M. L. Shepot’ko, Theor. Exp. Chem., 1991, 26, 480
(Teor. Eksp. Khim., 1990, 26, 505).
33 G. Busca, P. F. Rossi, V. Lorenzelli, M. Benaissa, J. Travert and J. C.
Lavalley, J. Phys. Chem., 1985, 89, 5433.
M
O
C
O
C
CO2
MeOH
O
O
Me
Me
O
OH
path b
M
M
– H2O MeOH
O
C
O
Me
C
Me
O
O
Me
O
O
M
M
34 L. Chen, S. Wang, J. Zhou,Y. Shen,Y. Zhao and X. Ma, RSC Adv., 2014,
4, 30968.
Figure 3 Postulated mechanism for the DMC formation from methanol
and CO2.
Received: 29th July 2016; Com. 16/5016
– 499 –