J.J. Almrud et al. / Bioorganic Chemistry 38 (2010) 252–259
259
[6] J.T. Stivers, C. Abeygunawardana, A.S. Mildvan, G. Hajipour, C.P. Whitman, L.H.
Chen, Biochemistry 35 (1996) 803–813.
quence (GLGG) and Lys-36 (in HpDmpI) may contribute to the pre-
sumed low pKa of Pro-1. The substrate for HpDmpI may be a mono-
acid and a binding role for Lys-36 cannot be excluded.
[7] R.M. Czerwinski, W.H. Johnson Jr., C.P. Whitman, T.K. Harris, C.
Abeygunawardana, A.S. Mildvan, Biochemistry 36 (1997) 14551–14560.
[8] C.P. Whitman, Arch. Biochem. Biophys. 402 (2002) 1–13.
[9] A.G. Murzin, Curr. Opin. Struct. Biol. 6 (1996) 386–394.
[10] G.J. Poelarends, C.P. Whitman, Bioorg. Chem. 32 (2004) 376–392.
[11] G.J. Poelarends, V.P. Veetil, C.P. Whitman, Cell Mol. Life Sci. 65 (2008) 3606–
3618.
[12] J.J. Almrud, A.D. Kern, S.C. Wang, R.M. Czerwinski, W.H. Johnson Jr., A.G.
Murzin, M.L. Hackert, C.P. Whitman, Biochemistry 41 (2002) 12010–12024.
[13] G.J. Poelarends, R. Saunier, D.B. Janssen, J. Bacteriol. 183 (2001) 4269–4277.
[14] S.C. Wang, M.D. Person, W.H. Johnson Jr., C.P. Whitman, Biochemistry 42
(2003) 8762–8773.
[15] G.J. Poelarends, H. Serrano, M.D. Person, W.H. Johnson Jr., A.G. Murzin, C.P.
Whitman, Biochemistry 43 (2004) 759–772.
[16] G.J. Poelarends, W.H. Johnson Jr., A.G. Murzin, C.P. Whitman, J. Biol. Chem. 278
(2003) 48674–48683.
[17] J.J. Almrud, G.J. Poelarends, W.H. Johnson Jr., H. Serrano, M.L. Hackert, C.P.
Whitman, Biochemistry 44 (2005) 14818–14827.
[18] R.M. Czerwinski, T.K. Harris, M.A. Massiah, A.S. Mildvan, C.P. Whitman,
Biochemistry 40 (2001) 1984–1995.
[19] R.M. de Jong, W. Brugman, G.J. Poelarends, C.P. Whitman, B.W. Dijkstra, J. Biol.
Chem. 279 (2004) 11546–11552.
[20] H.F. Azurmendi, S.C. Wang, M.A. Massiah, G.J. Poelarends, C.P. Whitman, A.S.
Mildvan, Biochemistry 43 (2004) 4082–4091.
[21] G.J. Poelarends, H. Serrano, W.H. Johnson Jr., D.W. Hoffman, C.P. Whitman, J.
Am. Chem. Soc. 126 (2004) 15658–15659.
[22] H. Lian, C.P. Whitman, J. Am. Chem. Soc. 115 (1993) 7978–7984.
[23] S.C. Wang, W.H. Johnson Jr., R.M. Czerwinski, C.P. Whitman, Biochemistry 43
(2004) 748–758.
[24] J. Sambrook, E.F. Fritsch, T. Maniatis, Molecular Cloning: A Laboratory Manual,
Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989.
[25] U.K. Laemmli, Nature 227 (1970) 680–685.
[26] W.J. Waddell, J. Lab. Clin. Med. 48 (1956) 311–314.
[27] N.A. Baker, D. Sept, S. Joseph, M.J. Holst, J.A. McCammon, Proc. Natl. Acad. Sci.
USA 98 (2001) 10037–10041.
[28] T.J. Dolinsky, J.E. Nielsen, J.A. McCammon, N.A. Baker, Nucleic Acids Res. 32
(2004) W665–W667.
[29] W.L. DeLano, The PyMOL molecular Graphics System, DeLano Scientific, San
Interestingly, 4-OT and YwhB show a low level CaaD activity [8].
In both cases, Pro-1 is critical for the activity. Arg-11 is critical for
the CaaD activity of YwhB but has no detrimental effect on that of
4-OT. (In fact, the activity increases slightly in the R11A mutant of
4-OT.) It is not known if subfamilies 3–5 members have low level
CaaD activities (or other low level activities). The characterization
of YwhB provided significant insight into the reaction and mecha-
nism of 4-OT. Likewise, characterization of the activities of these
other 4-OT homologs may provide clues about other activities
and chart an evolutionary trail.
Subfamily-4 is the least understood of the five subfamilies be-
cause the characteristics are not well defined. Other than the N-
terminal proline, the amino acid sequence comparisons do not
identify any common active site residues (except for CaaD)
[13,19]. The catalytic arginine residues found in 4-OT are replaced
by valines. The calculated surface topology for AfDmpI suggests
that the active site is a deep and well-defined cavity devoid of po-
sitive (or negative) electrostatic patches, and varies significantly
from that of 4-OT and HpDmpI.
Initial enzymatic characterization of AfDmpI appears to support
our interpretation of the chemical dissimilarity between AfDmpI
and 4-OT, and the 4-OT homologs characterized to date. AfDmpI
prefers monocarboxylate substrates with the non-carboxylate
end of the molecule being hydrophobic in nature, which is consis-
tent with the identification of 7 as the best substrate screened in
our studies. This observation is also in agreement with our crystal-
lographic observation that the ends of the AfDmpI active site are
hydrophobic in character where the arginine residues are replaced
with valines. It is unclear which group, if any, interacts with the C-
1 carboxylate. The true substrate may not be a mono- or diacid
substrate, but an enol wedged between hydrophobic groups. The
future characterization of members of this subfamily should pro-
vide better understanding of substrate preferences and architec-
tural functionality of the proteins’ active sites.
[30] B.W. Matthews, J. Mol. Biol. 33 (1968) 491–497.
[31] Z. Otwinowski, W. Minor, in: C.W. Carter Jr., R.M. Sweet (Eds.), Methods in
Enzymology, vol. 276, Academic Press, New York, 1997, pp. 307–326.
[32] Collaborative Computational Project, Number 4. (1994) Acta Crystallogr. D 50
(1994) 760-763.
[33] J. Navaza, Acta Crystallogr. A 50 (1994) 157–163.
[34] T.A. Jones, J.-Y. Zou, S.W. Cowan, M. Kjeldgaard, Acta Crystallogr. A 47 (1991)
110–119.
[35] G.N. Murshudov, A.A. Vagin, E.J. Dodson, Acta Crystallogr. D 53 (1997) 240–
255.
Acknowledgment
[36] A.T. Brünger, P.D. Adams, G.M. Clore, W.L. DeLano, P. Gros, R.W. Grosse-
Kunstleve, J.-S. Jiang, J. Kuszewski, M. Nilges, N.S. Pannu, R.J. Read, L.M. Rice, T.
Simonson, G.L. Warren, Acta Crystallogr. D 54 (1998) 905–921.
[37] R.J. Read, Acta Crystallogr. Biol Crystallogr. D 57 (2001) 1373–1382.
[38] R.M. Czerwinski, T.K. Harris, W.H. Johnson Jr., P.M. Legler, J.T. Stivers, A.S.
Mildvan, C.P. Whitman, Biochemistry 38 (1999) 12358–12372.
[39] T.K. Harris, R.M. Czerwinski, W.H. Johnson Jr., P.M. Legler, C.
Abeygunawardana, M.A. Massiah, J.T. Stivers, C.P. Whitman, A.S. Mildvan,
Biochemistry 38 (1999) 12343–12357.
The authors thank Dr. Youzhong Guo (The University of Texas at
Austin) for helpful comments and technical support of this project.
References
[1] S. Harayama, P.R. Lehrbach, K.N. Timmis, J. Bacteriol. 160 (1984) 251–255.
[2] C.P. Whitman, B.A. Aird, W.R. Gillespie, N.J. Stolowich, J. Am. Chem. Soc. 113
(1991) 3154–3162.
[3] L.H. Chen, G.L. Kenyon, F. Curtin, S. Harayama, M.E. Bembenek, G. Hajipour, C.P.
Whitman, J. Biol. Chem. 267 (1992) 17716–17721.
[4] S.C. Wang, W.H. Johnson Jr., R.M. Czerwinski, S.L. Stamps, C.P. Whitman,
Biochemistry 46 (2007) 11919–11929.
[5] H.S. Subramanya, D.I. Roper, Z. Dauter, E.J. Dodson, G.J. Davies, K.S. Wilson, D.B.
Wigley, Biochemistry 35 (1996) 792–802.
[40] A.B. Taylor, W.H. Johnson Jr., R.M. Czerwinski, H.S. Li, M.L. Hackert, C.P.
Whitman, Biochemistry 23 (1999) 7444–7452.
[41] G.J. Poelarends, W.H. Johnson Jr., H. Serrano, C.P. Whitman, Biochemistry 46
(2007) 9596–9604.
[42] J.B. Lubetsky, M. Swope, C. Dealwis, P. Blake, E. Lolis, Biochemistry 38 (1999)
7346–7354.
[43] W.H. Johnson Jr., R.M. Czerwinski, S.L. Stamps, C.P. Whitman, Biochemistry 38
(1999) 16024–16033.