H. Zipse et al.
[8] K.-S. Jeong, S.-H. Kim, H.-J. Park, K.-J. Chang, K. S. Kim, Chem.
Lett. 2002, 1114–1115.
Experimental Section
[9] a) T. Kawabata, M. Nagato, K. Takasu, K. Fuji, J. Am. Chem. Soc.
1997, 119, 3169–3170; b) T. Kawabata, K. Yamamoto, Y. Momose,
H. Yoshida, Y. Nagaoka, K. Fuji, Chem. Commun. 2001, 2700–2701;
c) T. Kawabata, R. Stragies, T. Fukaya, K. Fuji, Chirality 2003, 15,
71–76; d) T. Kawabata, R. Stragies, T. Fukaya, Y. Nagaoka, H.
Schedel, K. Fuji, Tetrahedron Lett. 2003, 44, 1545–1548.
[10] a) E. Vedejs, X. Chen, J. Am. Chem. Soc. 1996, 118, 1809–1810;
b) S. A. Shaw, P. Aleman, E. Vedejs, J. Am. Chem. Soc. 2003, 125,
13368–13369.
General: Dichloromethane was vigorously stirred over concentrated
H2SO4 to remove traces of olefins (3 days), and was then washed with
water, 5% aqueous K2CO3 solution, and water again. After drying over
CaCl2 for 2 days, it was distilled from CaH2. 4-Dimethylaminopyridine
(DMAP) was purchased from Acros Corporation and used without fur-
ther purification. Cyclohexanol and nonane (used as an internal stan-
dard) were purchased from Acros Corporation and distilled from sodium
before use. Triethylamine was distilled from CaH2; acetic anhydride was
refluxed with MgC2 at 80–908C for 5 days and distilled.
[11] a) A. H. Mermerian, G. C. Fu, Angew. Chem. 2005, 117, 971–974;
Angew. Chem. Int. Ed. 2005, 44, 949–952; b) J. E. Wilson, G. C. Fu,
Angew. Chem. 2004, 116, 6518–6520; Angew. Chem. Int. Ed. 2004,
43, 6358–6360; c) I. D. Hills, G. C. Fu, Angew. Chem. 2003, 115,
4051–4054; Angew. Chem. Int. Ed. 2003, 42, 3921–3924; d) Ara H.
Mermerian, G. C. Fu, J. Am. Chem. Soc. 2003, 125, 4050–4051;
e) B. L. Hodous, G. C. Fu, J. Am. Chem. Soc. 2002, 124, 10006–
10007; f) B. L. Hodous, G. C. Fu, J. Am. Chem. Soc. 2002, 124,
1578–1579; g) S. Bellemin-Laponnaz, J. Tweddell, J. C. Ruble, F. M.
Breitling, G. C. Fu, Chem. Commun. 2000, 1009–1010; h) J. C.
Ruble, J. Tweddell, G. C. Fu, J. Org. Chem. 1998, 63, 2794–2795;
i) J. C. Ruble, H. A. Latham, G. C. Fu, J. Am. Chem. Soc. 1997, 119,
1492–1493.
[12] a) A. C. Spivey, T. Fekner, S. E. Spey, H. Adams, J. Org. Chem.
1999, 64, 9430–9443, and references therein; b) A. C. Spivey, T.
Fekner, S. E. Spey, J. Org. Chem. 2000, 65, 3154–3159; c) A. C.
Spivey, A. Maddafort, T. Fekner, A. J. Redgrave, C. S. Frampton, J.
Chem. Soc. Perkin Trans. 1 2000, 3460–3468; d) A. C. Spivey, A.
Maddafort, T. Fekner, D. P. Leese, A. J. Redgrave, C. S. Frampton, J.
Chem. Soc. Perkin Trans. 1 2001, 1785–1794; e) A. C. Spivey, D. P.
Leese, F. Zhu, S. G. Davey, R. L. Jarvest, Tetrahedron 2004, 60,
4513–4525.
Kinetic measurements: Reaction solutions were prepared through mixing
stock solutions of DMAP with a calibrated solution containing cyclohex-
anol, acetic anhydride, and triethylamine. Reactions were performed
under a nitrogen atmosphere at 208C. All kinetic measurements were
performed by using gas chromatography (FISONS 8130, Column: SE30)
with nonane as internal standard. Rate measurements were performed
through following the disappearance of the minor reaction component
under pseudo-first-order conditions.
Computational details: All stationary points were optimized at the
Becke3LYP/6-31G(d) level of theory. For all stationary points a number
of conformational isomers exist. Only the energetically most favorable
conformer was used to generate the enthalpy profile discussed in the
text. An overview of all isomers is available in the Supporting Informa-
tion. The nature of all stationary points was verified through calculation
of the vibrational frequency spectrum. Thermochemical corrections to
calculate enthalpies at 298 K were obtained by using the rigid rotor/har-
monic oscillator model and the force constants calculated at Becke3LYP/
6-31G(d) level. Single-point calculations were subsequently performed at
the Becke3LYP/6-311+G(d,p) level of theory. Combination of the single-
point energies with thermochemical corrections calculated at Becke3-
LYP/6-31G(d) level yields the “H298” values cited in the text. Solvent ef-
fects have been estimated through single-point calculations for the
Becke3LYP/6-31G(d) gas-phase structures. The PCM/UAHF model was
used for this purpose, again in combination with the Becke3LYP/6-
31G(d) method.[24] Solvent effect calculations were performed for carbon-
tetrachloride (CCl4, e=2.23), chloroform (CHCl3, e=4.90), and methyl-
enechloride (CH2Cl2, e=8.93) by using Gaussian 03, Rev. B.03. All other
calculations were performed with Gaussian 98, Rev. A.11.[25]
[13] G. Priem, B. Pelotier, S. J. F. Macdonald, M. S. Anson, I. B. Camp-
bell, J. Org. Chem. 2003, 68, 3844–3848.
[14] E. Guibe-Jampel, G. Le Corre, M. Wakselman, Tetrahedron Lett.
1979, 20, 1157–1160.
[15] E. Kattnig, M. Albert, Org. Lett. 2004, 6, 945–948.
[16] G. Lamaty, F. Mary, J. P. Roque, J. Chim. Phys. Phys.-Chim. Biol.
1991, 88, 1793–1810.
[17] a) S. Ba-Saif, A. K. Luthra, A. Williams, J. Am. Chem. Soc. 1987,
109, 6362–6368; b) S. Ba-Saif, A. K. Luthra, A. Williams, J. Am.
Chem. Soc. 1989, 111, 2647–2652; c) A. Williams, Acc. Chem. Res.
1989, 22, 387–392; d) A. Williams, Chem. Soc. Rev. 1994, 23, 93–
100.
[18] S. Stefanidis, S. Cho, S. Dhe-Paganon, W. P. Jencks, J. Am. Chem.
Soc. 1993, 115, 1650–1656.
[19] a) A. C. Hengge, R. A. Hess, J. Am. Chem. Soc. 1994, 116, 11256–
11263; b) R. A. Hess, A. C. Hengge, W. W. Cleland, J. Am. Chem.
Soc. 1997, 119, 6980–6983; c) R. A. Hess, A. C. Hengge, W. W. Cle-
land, J. Am. Chem. Soc. 1998, 120, 2703–2709.
[20] J. I. Braumann, M. Zhong, J. Am. Chem. Soc. 1999, 121, 2508–2515.
[21] J. F. Marlier, Acc. Chem. Res. 2001, 34, 283–290.
[22] A tetrahedral intermediate as proposed in reference [3f] could not
be located on the reaction pathway between reactant complex 6 and
acyl intermediate 8.
[23] Preliminary measurements with tert-butanol as the alcohol indicated
that at the lowest concentrations needed for full kinetic analysis,
half-lives would exceed 14 days.
[24] a) C. Amovilli, V. Barone, R. Cammi, E. Cances, M. Cossi, B. Men-
nucci, C. S. Pomelli, J. Tomasi, Adv. Quantum Chem. 1998, 32, 227–
262; b) M. Cossi, G. Scalmani, N. Rega, V. Barone, J. Chem. Phys.
2002, 117, 43.
[1] a) W. Steglich, G. Hçfle, Angew. Chem. 1969, 81, 1001; Angew.
Chem. Int. Ed. Engl. 1969, 8, 981; b) G. Hçfle, W. Steglich, Synthesis
1972, 619–621.
[2] L. M. Litvinenko, A. I. Kirichenko, Dokl. Akad. Nauk SSSR 1967,
176, 97–100.
[3] For reviews see: a) G. Hçfle, W. Steglich, H. Vorbrüggen, Angew.
Chem. 1978, 90, 602–615; Angew. Chem. Int. Ed. Engl. 1978, 17,
569–583; b) E. F. V. Scriven, Chem. Soc. Rev. 1983, 12, 129–161;
c) A. Hassner, in Encyclopedia of Reagents for Organic Synthesis,
Wiley, Chichester, 1995, pp. 2022–2024; d) U. Ragnarsson, L.
Grehn, Acc. Chem. Res. 1998, 31, 494–501; e) D. J. Berry, C. V. Dig-
iovanna, S. S. Metrick, R. Murugan, Arkivoc 2001, 201–226; f) A. C.
Spivey, S. Arseniyadis, Angew. Chem. 2004, 116, 5552–5557; Angew.
Chem. Int. Ed. 2004, 43, 5436–5441.
[4] M. R. Heinrich, H. S. Klisa, H. Mayr, W. Steglich, H. Zipse, Angew.
Chem. 2003, 115, 4975–4977; Angew. Chem. Int. Ed. 2003, 42, 4826–
4828.
[5] A. Hassner, L. R. Krepski, V. Alexanian, Tetrahedron 1978, 34,
2069–2076.
[6] For reviews see: a) G. C. Fu, Acc. Chem. Res. 2000, 33, 412–420;
b) A. C. Spivey, A. Maddaford, A. Redgrave, Org. Prep. Proced. Int.
2000, 32, 331–365; c) G. C. Fu, Acc. Chem. Res. 2004, 37, 542–547;
d) P. I. Dalko, L. Moisan, Angew. Chem. 2004, 116, 5248–5286;
Angew. Chem. Int. Ed. 2004, 43, 5138–5178.
[25] a) Gaussian 03 (Revision B.03), M. J. Frisch, G. W. Trucks, H. B.
Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Mont-
gomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S.
Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani,
N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
[7] S. Tabanella, I. Valancogne, R. F. W. Jackson, Org. Biomol. Chem.
2003, 1, 4254–4261.
4756
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2005, 11, 4751 –4757