S. Cheng et al.: Methanol Electro-Oxidation
chemisorbed and partially hydrated OH− ions. The
adsorbed OH− can be oxidized to form MOH (where the
M means Au here), and MOH is oxidized further to pro-
duce MO [57]. The generation of the gold oxide [58] is an
important property of Au electrodes, which plays a key
role in enhancing the catalytic activity in alkaline solution
[59]. These results shown above suggest that our findings
for electrode oxidation efficiency are in good agreement
with previous literature reports.
8. Liu, P., Lanekoff, I.T., Laskin, J., Dewald, H.D., Chen, H.: Study of
electrochemical reactions using nanospray desorption electrospray ioniza-
tion mass spectrometry. Anal. Chem. 84, 5737–5743 (2012)
9. Bruckenstein, S., Gadde, R.R.: Use of a porous electrode for in situ mass
spectrometric determination of volatile electrode reaction products J. Am.
Chem. Soc. 93, 793–794 (1971)
10. Hambitzer, G., Heitbaum, J.: Electrochemical thermospray mass spectrom-
etry. Anal. Chem. 58, 1067–1070 (1986)
11. Diehl, G., Liesener, A., Karst, U.: Liquid chromatography with post-
column electrochemical treatment and mass spectrometric detection of
non-polar compounds. Analyst. 126, 288–290 (2001)
12. Bartmess, J.E., Phillips, L.R.: Electrochemically assisted fast atom bom-
bardment mass spectrometry. Anal. Chem. 59, 2012–2014 (1987)
13. Regino, M.C.S., Brajter-Toth, A.: An electrochemical cell for on-line
electrochemistry/mass spectrometry. Anal. Chem. 69, 5067–5072 (1997)
14. Kertesz, V., Van Berkel, G.J.: Surface-assisted reduction of aniline oligo-
mers, N-phenyl-1,4-phenylenediimine and thionin in atmospheric pressure
chemical ionization and atmospheric pressure photoionization J. Am. Soc.
Mass Spectrom. 13, 109–117 (2002)
15. Zhou, F.M., Van Berkel, G.J.: Electrochemistry combined online with
electrospray mass spectrometry. Anal. Chem. 67, 3643–3649 (1995)
16. Brown, T.A., Chen, H., Zare, R.N.: Identification of fleeting electrochem-
ical reaction intermediates using desorption electrospray ionization mass
spectrometry. J. Am. Chem. Soc. 137, 7274–7277 (2015)
17. Wolter, O., Heitbaum, J.: Differential electrochemical mass spectroscopy
(DEMS)—a new method for the study of electrode processes. Ber. Bunsen-
Ges. Phys. Chem. 88, 2–6 (1984)
18. Jusys, Z., Massong, H., Baltruschat, H.: A new approach for simultaneous
DEMS and EQCM: electro-oxidation of adsorbed CO on Pt and Pt–Ru. J.
Electrochem. Soc. 146, 1093–1098 (1999)
Conclusions
Analysis of HCHO generated from the methanol electro-
oxidation reaction is traditionally difficult, and this study pre-
sents an ambient DESI-MS approach to tackle this challenge,
for the first time. Our DESI-MS method is fast, has high salt
tolerance, and involves simple instrumentation, which can be
applicable for HCHO analysis from methanol electro-oxidation
in both acidic and basic conditions. Conversion yields by
different electrodes were evaluated and the results showed that
platinum-based catalysts produced more HCHO in acidic con-
dition than the Au catalyst, while the latter offered a higher
yield over the platinum group catalysts in alkaline condition.
The presented methodology would be valuable for elucidating
fuel cell reaction mechanisms and for screening ideal fuel cell
electrode materials.
19. Zhao, W., Jusys, Z., Behm, R.J.: Complete quantitative online analysis of
methanol electrooxidation products via electron impact and electrospray
ionization mass spectrometry. Anal. Chem. 84, 5479–5483 (2012)
20. Verma, A., Basu, S.: Direct use of alcohols and sodium borohydride as fuel
in an alkaline fuel cell. J. Power Sources 145, 282–285 (2005)
21. Cooks, R.G., Ouyang, Z., Takats, Z., Wiseman, J.M.: Ambient mass
spectrometry. Science, 311, 1566–1570 (2006)
22. Takáts, Z., Wiseman, J.M., Gologan, B., Cooks, R.G.: Mass spectrometry
sampling under ambient conditions with desorption electrospray ionization.
Science 306, 471–473 (2004)
A patent application was filed for the preliminary study of
this work [60].
23. Chen, H., Talaty, N., Takáts, Z., Cooks, G.R.: Desorption electrospray
ionization mass spectrometry for high-throughput analysis of pharmaceuti-
cal samples in the ambient environment. Anal. Chem. 77, 6915–6927
(2005)
24. Weston, D.J., Bateman, R., Wilson, I.D., Wood, T.R., Creaser, C.S.: Direct
analysis of pharmaceutical drug formulations using ion mobility spectrom-
etry/quadrupole-time-of-flight mass spectrometry combined with desorp-
tion electrospray ionization. Anal. Chem. 77, 7572–7580 (2005)
25. Williams, J.P., Scrivens, J.H.: Rapid accurate mass desorption electrospray
ionisation tandem mass spectrometry of pharmaceutical samples. Rapid
Commun. Mass Spectrom. 19, 3643–3650 (2005)
26. Shin, Y.-S., Drolet, B., Mayer, R., Dolence, K., Basile, F.: Desorption
electrospray ionization-mass spectrometry of proteins. Anal. Chem. 79,
3514–3518 (2007)
27. Jackson, A.U., Werner, S.R., Talaty, N., Song, Y., Campbell, K., Cooks,
R.G.: Targeted metabolomic analysis of Escherichia coli by desorption
electrospray ionization and extractive electrospray ionization mass spec-
trometry. Anal. Biochem. 375, 272–281 (2008)
Acknowledgments
Q.W. thanks the Program of Study Abroad for Young Teachers
by Agricultural University of Hebei. This work is supported by
NSF Career (CHE-1149367), NSF IDBR (CHE-1455554), and
Ohio University Technology Seed Fund (GR0017495.01.05).
References
1. Leuthold, L.A., Mandscheff, J.F., Fathi, M., Giroud, C., Augsburger, M.,
Varesio, E., Hopfgartner, G.: Desorption electrospray ionization mass
spectrometry: direct toxicological screening and analysis of illicit ecstasy
tablets. Rapid Commun. Mass Spectrom. 20, 103–110 (2006)
2. Paul, D.R., Robeson, L.M.: Polymer nanotechnology: nanocomposites.
Polymer 49, 3187–3204 (2008)
3. Ota, K.I., Nakagawa, Y., Takahashi, M.: Reaction products of anodic
oxidation of methanol in sulfuric acid solution. J. Electroanal. Chem. 179,
179–184 (1984)
28. Talaty, N., Takats, Z., Cooks, R.G.: Rapid in situ detection of alkaloids in
plant tissue under ambient conditions using desorption electrospray ioniza-
tion. Analyst 130, 1624–1633 (2005)
4. Zhao, W., Jusys, Z., Behm, R.J.: Quantitative online analysis of liquid-
phase products of methanol oxidation in aqueous sulfuric acid solutions
using electrospray ionization mass spectrometry. Anal. Chem. 82, 2472–
2479 (2010)
5. Iwasita-Vielstich, T.: Advances in Electrochemical Science and En-
gineering. 1(3), 127–170 (2008)
29. Wiseman, J.M., Ifa, D.R., Song, Q., Cooks, R.G.: Tissue imaging at
atmospheric pressure using desorption electrospray ionization (DESI) mass
spectrometry. Angew. Chem. Int. Ed. 45, 7188 (2006)
30. Badu-Tawiah, A., Bland, C., Campbell, D.I., Cooks, R.G.: Non-aqueous
spray solvents and solubility effects in desorption electrospray ionization. J.
Am. Soc. Mass Spectrom. 21, 572–579 (2010)
6. Childers, C.L., Huang, H., Korzeniewski, C.: Formaldehyde yields from
methanol electrochemical oxidation on carbon-supported platinum cata-
lysts. Langmuir 15, 786–789 (1999)
7. Wang, H., Rus, E., Abruña, H.D.: New double-band-electrode channel
flow differential electrochemical mass spectrometry cell: application for
detecting product formation during methanol electrooxidation. Anal.
Chem. 82, 4319–4324 (2010)
31. Zhang, S., Shin, Y.-S., Mayer, R., Basile, F.: On-probe pyrolysis desorption
electrospray ionization (DESI) mass spectrometry for the analysis of non-
volatile pyrolysis products. J. Anal. Appl. Pyrol. 80, 353–359 (2007)
32. Miao, Z., Chen, H. : Proceedings of 56th ASMS Conference on Mass and
Allied Topics. Denver, CO, June 1–5 (2008)
33. Chipuk, J.E., Brodbelt, J.S.: Transmission mode desorption electrospray
ionization. J. Am. Soc. Mass Spectrom. 19, 1612–1620 (2008)