LETTER
Synthesis of 3-Indolyl-N-Substituted Glycine Derivatives
1163
(3) (a) Humber, L. G.; Ferdinandi, E.; Demerson, C. A.; Ahmed,
S.; Shah, U.; Mobilio, D.; Sabatucci, J.; De Lange, B.;
Labbadia, F.; Hughes, P.; DeVigilio, J.; Neuman, G.; Chau,
T. T.; Weichman, B. M. J. Med. Chem. 1988, 31, 1712.
(b) Katz, A. H.; Demerson, C. A.; Shaw, C. C.; Asselin, A.
A.; Humber, L. G.; Conway, K. M.; Gavin, G.; Guinosso, C.;
Jensen, N. P.; Mobilio, D.; Noureldin, R.; Schmid, J.; Shah,
U.; Van Engen, D.; Chau, T. T.; Weichman, B. M. J. Med.
Chem. 1988, 31, 1244.
(4) Blaszczak, L. C.; Turner, J. P. US Patent, 4492694, 1985.
(5) (a) Sakai, N.; Hirasawa, M.; Hamajima, T.; Konakahara, T.
J. Org. Chem. 2003, 68, 483. (b) Sakai, N.; Hamajima, T.;
Konakahara, Tetrahedron Lett. 2002, 43, 4821.
2,3-benzofuran (1j) and thionaphthene (1k) which were
known to be less reactive than indole toward the aromatic
electrophilic substitution were not suitable substrates for
this F–C reaction (entries 10 and 11).
Table 3 Results of Indole 2c with Various 3-Unsubstituted Indoles
Promoted by TFA
20
En-
try
Indole
R5
Product Yield de
(%) (%)
[a]D
R2
X
1
2
3
4
5
6
7
8
9
1a
1b
1c
1d
1e
1f
H
H
H
H
H
H
H
NH
3ac
83
80
82
71
75
43
85
81
64 (S)
(c) Janczuk, A.; Zhang, W.; Xie, W. H.; Lou, S. Z.; Cheng,
J. P.; Wang, P. G. Tetrahedron Lett. 2002, 43, 4271.
(d) Wynne, J. H.; Stalick, W. M. J. Org. Chem. 2002, 67,
5850. (e) Hao, J.; Taktak, S.; Aikawa, K.; Yusa, Y.; Hatano,
M.; Mikami, K. Synlett 2001, 1443. (f) Xie, W. H.;
Bloomfield, K. M.; Jin, Y. F.; Dolney, N. Y.; Wang, P. G.
Synlett 1999, 498.
H
NCH3 3bc
N-Tos 3cc
N-Boc 3dc
N-CBz 3ec
99 (S) +114
99 (S) +52
99 (S) +122
99 (S) +136
62 (S)
H
H
H
(6) (a) Jiang, B.; Yang, C. G.; Gu, X. H. Tetrahedron Lett. 2001,
42, 2545; and references cited therein. (b) Corey, E. J.;
Gorgan, M. J. Org. Lett. 1999, 1, 157. (c) Ishitani, H.;
Komiyama, S.; Kobayashi, S. Angew. Chem. Int. Ed. 1998,
37, 3186. (d) Iyer, M. S.; Gigstad, K. M.; Namdev, N. D.;
Lipton, M. J. Am. Chem. Soc. 1996, 118, 4910.
(7) Johannsen, M. Chem. Commun. 1999, 2233.
(8) (a) Ferraris, D.; Young, B.; Dudding, T.; Drury, W. J. II.;
Lectka, T. Tetrahedron 1999, 55, 8869. (b) Ferraris, D.;
Dudding, T.; Young, B.; William, J. D. III.; Lectka, T. J.
Org. Chem. 1999, 64, 2168.
(9) (a) Petasis, N. A.; Goodman, A.; Zavialov, I. A. Tetrahedron
1997, 48, 16463. (b) Petasis, N. A.; Zavialov, I. A. J. Am.
Chem. Soc. 1997, 119, 445. (c) Petasis, N. A.; Boral, S.
Tetrahedron Lett. 2001, 42, 539.
(10) (a) Olah, G. A. Friedel-Crafts and Related Reactions, Vol.
III; Interscience: New York, 1964, Part 1. (b)Heaney, H. In
Comprehensive Organic Synthesis; Trost, B. M., Ed.;
Pergamon Press: New York, 1991.
(11) (a) Ueda, M.; Miyabe, H.; Teramachi, M.; Miyata, O.; Naito,
T. Chem. Commun. 2003, 426. (b) Bertrand, M. P.; Coantic,
S.; Feray, L.; Nouguier, R.; Perfetti, P. Tetrahedron 2000,
56, 3951. (c) Bertrand, M. P.; Feray, L.; Nouguier, R.;
Stella, L. Synlett 1998, 780. (d) Harwood, L. M.; Tyler, S.
N. G.; Anslow, A. S.; MacGilp, I. D.; Drew, M. G. B.
Tetrahedron: Asymmetry 1997, 8, 4007. (e) Harwood, L.
M.; Vines, K. J.; Drew, M. G. B. Synlett 1996, 1051.
(12) (a) Tohma, S.; Endo, A.; Kan, T.; Fukuyama, T. Synlett
2001, 1179. (b) Endo, A.; Yanagisawa, A.; Abe, M.; Tohma,
S.; Kan, T.; Fukuyama, T. J. Am. Chem. Soc. 2002, 124,
6552. (c) Endo, A.; Kan, T.; Fukuyama, T. Synlett 1999,
1103.
CH3
NH
3fc
1g
1h
1i
H
OH NH
Br NH
3gc
3hc
99 (S) +68
99 (S) +52
99 (S) +148
H
CO2C2H5
H
H
H
NH
O
3jc (3c*) 90
10 1j
11 1k
H
H
NR
NR
S
In summary, the scope of the TFA-promoted F–C type re-
action of chiral cyclic glyoxylate imine 2c with indoles
has been extended to allow the efficient preparation of
various optically pure 3-indoly-N-substituted glycine de-
rivatives.22 The method is applicable to both electron-rich
and electron-poor indole substrates. Further applications
of the F–C products 3 to synthesize a range of optically
pure a-alkylated indolylglycine derivatives are currently
under investigation in our laboratories.
Acknowledgement
We thank the National Natural Science Foundation of China (No.
20172056, 20232010), Ministry of Science and Technology of Chi-
na (No. 2002CCA03100), and the Chinese Academy of Sciences for
financial supports.
(13) (a) Snyder, H. R.; Matteson, D. S. J. Am. Chem. Soc. 1957,
79, 2217. (b) Van Tamelen, E. E.; Knapp, G. C. J. Am.
Chem. Soc. 1955, 77, 1860.
(14) (a) Ottoni, O.; de V. F. Neder, A.; Dias, A. K. B.; Cruz, R.
P.; Aquino, L. B. Org. Lett. 2001, 3, 1005. (b) Okauchi, T.;
Itonaga, M.; Minami, T.; Owa, T.; Kitoh, K.; Yoshino, H.
Org. Lett. 2000, 2, 1485.
(15) (a) Chen, Y. J.; Ge, C. S.; Wang, D. Synlett 2000, 1429.
(b) Ge, C. S.; Zhang, J.; Chen, Y. J.; Wang, D. Acta Chimica
Sinica 2001, 59, 1835. (c) Ge, C. S.; Chen, Y. J.; Wang, D.
Synlett 2002, 37.
(16) Shafer, C. M.; Molinski, T. F. J. Org. Chem. 1996, 61, 2044.
(17) Meyers, A. I.; Knaus, G.; Kamata, K.; Ford, M. E. J. Am.
Chem. Soc. 1976, 98, 567.
References
(1) (a) Najera, C. Synlett 2002, 9, 1388. (b) Williams, R. M.;
Hendrix, J. A. Chem. Rev. 1992, 92, 889. (c) Williams, R.
M. Aldrichimica Acta 1992, 11. (d) Duthaler, R. O.
Tetrahedron 1994, 50, 1539. (e) Shen, T. Y. US Patent,
3316260, 1968. (f) Blaszczak, L. C.; Turner, J. R. EP
122157, 1984. (g) Clark, B. P.; Harris, J. R. Synth. Commun.
1997, 27, 4223.
(2) (a) Kawasaki, T.; Ohno, K.; Enoki, H.; Umemoto, Y.;
Sakamoto, M. Tetrahedron Lett. 2002, 43, 4245.
(b) Kawasaki, T.; Enoki, H.; Matsumura, K.; Ohyama, M.;
Inagawa, M.; Sakamoto, M. Org. Lett. 2000, 2, 3027.
(c) Yang, C. G.; Wang, J.; Tang, X. X.; Jiang, B.
Tetrahedron: Asymmetry 2002, 13, 383.
Synlett 2003, No. 8, 1160–1164 ISSN 1234-567-89 © Thieme Stuttgart · New York