Switching of Macromolecular Helicity
A R T I C L E S
macromolecular helicity inversion were then investigated by
means of absorption and circular dichroism (CD) spectroscopies.
Although we previously proposed the inversion of helicity
of the poly-2â backbone as a plausible conformational change
for the visual color change by external stimuli based on the
Cotton effect inversion together with the calculation results of
a model polymer,8 there may be another possibility to explain
the changes in the CD patterns; that is a change in the helical
pitch of poly-2â with the same-handedness rather than the helix
inversion (Figure 1B). This possibility could not be ruled out.
To obtain more direct evidence for inversion of the helicity,
the dynamic helical conformations of poly-2â showing opposite
Cotton effect signs in different solvents were fixed by intramo-
lecular cross-linking between the hydroxy groups of the
neighboring â-CyD units in each solvent, and changes in their
chiroptical properties after cross-linking were investigated in
detail. We anticipated that the intramolecular cross-linking
would suppress conformational changes in the polymer back-
bones to fix the helix-senses in each solvent. On the basis of
these results, the origin of the inversion of the Cotton effect
signs of CyD-bound helical poly(phenylacetylene)s by external
stimuli accompanied by a visible color change was discussed.
Figure 1. Schematic illustrations of a possible conformational change of
poly-1r, -2â, -3γ, and -2â-Me accompanied by a visible color change and
inversion of the Cotton effect sign.
pH, temperature, solvent, salt concentration, or by irradiation
with light. These switchable helical materials have potential
applications in data storage, optical devices, and liquid crystals
for displays, but switching of the macromolecular and supramo-
lecular helicity by chiral stimuli still remains rare,1c,d,f,4,8,11d,ï
although such chiral materials can be used to sense the chirality
of chiral guests.
The present work is concerned with the mechanism of the
visible color change of poly-2â, with respect to the inversion
of helicity of the polymer backbone during changes in the Cotton
effect signs. A series of stereoregular helical poly(phenylacety-
lene)s bearing R-, â-, and γ-CyD and permethylated â-CyD
residues as the pendants (poly-1r, poly-2â, poly-3γ, and poly-
2â-Me, respectively; Scheme 1) was synthesized. The effects
of the ring size of the CyD pendants and the hydroxy groups in
the â-CyD unit on their chiroptical properties including the
Results and Discussion
Synthesis and Polymerization of Phenylacetylenes Bearing
CyD Pendants and Structural Characteristics of the Poly-
mers. Four optically active phenylacetylenes bearing CyD
pendants, such as, R- (1r), â- (2â), γ-CyD (3γ), and perm-
ethylated â-CyD (2â-Me), were prepared as outlined in Scheme
1. The reaction of 4-ethynylbenzoyl chloride with the monoamino-
CyD derivatives, R-CyD-NH2, â-CyD-NH2, γ-CyD-NH2, and
Meâ-CyD-NH2, which had been prepared from the correspond-
ing CyDs according to the literature method,13 afforded 1r, 2â,
3γ, and 2â-Me in good yields, respectively. The polymerization
was performed with a rhodium catalyst, [Rh(nbd)Cl]2,14 in the
presence of triethylamine, giving high molecular weight, cis-
transoidal poly(phenylacetylene)s. The polymerization results
are summarized in Table 1.
The polymerization in DMF proceeded rapidly and homo-
geneously, yielding high molecular weight polymers with low
molecular weight oligomers except for 2â-Me (run 6 in Table
1), as evidenced by the size exclusion chromatography (SEC)
measurements, which could be removed by reprecipitation
(Table 1 and Supporting Information). On the other hand, the
polymerization in DMSO and pyridine (runs 2 and 3 in Table
1, respectively) gave low molecular weight polymers and
oligomers.
(10) For reviews, see: (a) Okamoto, Y.; Nakano, T. Chem. ReV. 1994, 94, 349-
372. (b) Green, M. M.; Park, J.-W.; Sato, T.; Teramoto, A.; Lifson, S.;
Selinger, R. L. B.; Selinger, J. V. Angew. Chem., Int. Ed. 1999, 38, 3138-
3154. (c) Fujiki, M. Macromol. Rapid Commun. 2001, 22, 539-563. (d)
Yashima, E. Anal. Sci. 2002, 18, 3-6. (e) Nomura, R.; Nakako, H.; Masuda,
T. J. Mol. Catal. A: Chem. 2002, 190, 197-205. (f) Fujiki, M.; Koe, J.
R.; Terao, K.; Teramoto, A.; Watanabe, J. Polym. J. (Tokyo) 2003, 35,
297-344. (g) Yashima, E.; Maeda, K.; Nishimura, T. Chem.-Eur. J. 2004,
10, 43-51.
(11) For leading references, see: (a) Okamoto, Y.; Nakano, T.; Ono, E.; Hatada,
K. Chem. Lett. 1991, 525-528. (b) Maxein, G.; Zentel, R. Macromolecules
1995, 28, 8438-8440. (c) Maeda, K.; Okamoto, Y. Macromolecules 1998,
31, 5164-5166. (d) Yashima, E.; Maeda, Y.; Okamoto, Y. J. Am. Chem.
Soc. 1998, 120, 8895-8896. (e) Langeveld-Voss, B. M. W.; Christiaans,
M. P. T.; Janssen, R. A. J.; Meijer, E. W. Macromolecules 1998, 31, 6702-
6704. (f) Hino, K.; Maeda, K.; Okamoto, Y. J. Phys. Org. Chem. 2000,
13, 361-367. (g) Cheon, K. S.; Selinger, J. V.; Green, M. M. Angew.
Chem., Int. Ed. 2000, 39, 1482-1485. (h) Fujiki, M. J. Am. Chem. Soc.
2000, 122, 3336-3343. (i) Fujiki, M.; Koe, J. R.; Motonaga, M.;
Nakashima, H.; Terao, K.; Teramoto, A. J. Am. Chem. Soc. 2001, 123,
6253-6261. (j) Nakako, H.; Nomura, R.; Masuda, T. Macromolecules 2001,
34, 1496-1502. (k) Teramoto, A.; Terao, K.; Terao, Y.; Nakamura, N.;
Sato, T.; Fujiki, M. J. Am. Chem. Soc. 2001, 123, 12303-12310. (l) Cheuk,
K. K. L.; Lam, J. W. Y.; Chen, J.; Lai, L. M.; Tang, B. Z. Macromolecules
2003, 36, 5947-5959. (m) Cheuk, K. K. L.; Lam, J. W. Y.; Lai, L. M.;
Dong, Y.; Tang, B. Z. Macromolecules 2003, 36, 9752-9762. (n) Maeda,
K.; Morino, K.; Yashima, E. J. Polym. Sci., Part A: Polym. Chem. 2003,
41, 3625-3631. (o) Morino, K.; Maeda, K.; Yashima, E. Macromolecules
2003, 36, 1480-1486. (p) Ohira, A.; Kunitake, M.; Fujiki, M.; Naito, M.;
Saxena, A. Chem. Mater. 2004, 16, 3919-3923. (q) Tabei, J.; Nomura,
R.; Sanda, F.; Masuda, T. Macromolecules 2004, 37, 1175-1179. (r)
Maeda, K.; Kamiya, N.; Yashima, E. Chem.-Eur. J. 2004, 10, 4000-
4010. (s) Miyagawa, T.; Furuko, A.; Maeda, K.; Katagiri, H.; Furusho, Y.;
Yashima, E. J. Am. Chem. Soc. 2005, 127, 5018-5019. (t) Lam J. W. Y.;
Tang, B. Z. Acc. Chem. Res. 2005, 38, 745-754. (u) Tabei, J.; Nomura,
R.; Shiotsuki, M.; Sanda, F.; Masuda, T. Macromol. Chem. Phys. 2005,
206, 323-332. (v) Sanda, F.; Terada, K.; Masuda, T. Macromolecules 2005,
38, 8149-8154. (w) Otsuka, I.; Sakai, R.; Satoh, T.; Kakuchi, R.; Kaga,
H.; Kakuchi, T. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 5855-
5863.
The stereoregularity of the polymers was investigated by 1H
NMR14a,15 and Raman spectroscopies,16,17 and all the polymers
were found to possess a highly cis-transoidal structure (Figures
S1 and S2 in Supporting Information). The obtained cis-
(13) (a) Ueno, A.; Tomita, Y.; Osa, T. Chem. Lett. 1983, 1635-1638. (b)
Hamada, F.; Murai, K.; Ueno, A.; Suzuki, I.; Osa, T. Bull. Chem. Soc.
Jpn. 1988, 61, 3758-3760. (c) Hamasaki, K.; Ikeda, H.; Nakamura, A.;
Ueno, A.; Toda, F.; Suzuki, I.; Osa, T. J. Am. Chem. Soc. 1993, 115, 5035-
5040. (d) Chen, Z.; Bradshaw, J. S.; Lee, M. L. Tetrahedron Lett. 1996,
37, 6831-6834. (e) Zhang, L.; Wong, Y. C.; Chen, L.; Ching, C. B.; Ng,
S.-C. Tetrahedron Lett. 1999, 40, 1815-1818.
(14) (a) Furlani, A.; Napoletano, C.; Russo, M. V.; Feast, W. J. Polym. Bull.
1986, 16, 311-317. (b) Furlani, A.; Napoletano, C.; Russo, M. V.; Camus,
A.; Marsich, N. J. Polym. Sci., Part A: Polym. Chem. 1989, 27, 75-86.
(c) Tabata, M.; Yang, W.; Yokota, K. Polym. J. (Tokyo) 1990, 22, 1105-
1107. (d) Tabata, M.; Yang, W.; Yokota, K. J. Polym. Sci., Part A: Polym.
Chem. 1994, 32, 1113-1120.
(12) (a) Koumura, N.; Zijlstra, R. W. J.; van Delden, R. A.; Harada, N.; Feringa,
B. L. Nature 1999, 401, 152-155. (b) Zahn, S.; Canary, J. W. Science
2000, 288, 1404-1407. (c) Barcena, H. S.; Holmes, A. E.; Zahn, S.; Canary,
J. W. Org. Lett. 2003, 5, 709-711. (d) Miyake, H.; Yoshida, K.; Sugimoto,
H.; Tsukube, H. J. Am. Chem. Soc. 2004, 126, 6524-6525. (e) Fletcher,
S. P.; Dumur, F.; Pollard, M. M.; Feringa, B. L. Science 2005, 310, 80-
82. (f) Miyake, H.; Sugimoto, H.; Tamiaki, H.; Tsukube, H. Chem.
Commun. 2005, 4291-4293.
9
J. AM. CHEM. SOC. VOL. 128, NO. 23, 2006 7641