22
G.D. Yadav, P.A. Thorat / Journal of Molecular Catalysis B: Enzymatic 83 (2012) 16–22
Table 1
References
Values of the kinetic parameter for ping-pong bi-bi mechanism with isoamyl alcohol
inhibition.
[1] A.R.M. Yahya, W.A. Anderson, M. Moo-Young, Enzyme Microb. Technol. 23
(1998) 438–450.
[2] P. Pepin, R. Lortie, Biotechnol. Bioeng. 63 (1999) 502–505.
[3] A. Schmid, J.S. Dordick, B. Hauer, A. Kiener, M. Wubbolts, B. Witholt, Nature 409
(6817) (2001) 258–268.
[4] A.E.V. Petersson, L.M. Gustafsson, M. Nordblad, P. Börjesson, B. Mattiasson, P.
Adlercreutz, Green Chem. 7 (2005) 837–843.
[5] L.N. Mutua, C.C. Akoh, J. Am. Oil Chem. Soc. 70 (1993) 43–46.
[6] A. Buthe, T. Recker, M. Heinemann, W. Hartmeier, J. Büchs, M.B. Ansorge-
Schumacher, Biocatal. Biotrans. 23 (2005) 307–314.
Kinetic parameter
Value
Apparent vm (mol L−1 min−1
Apparent KmA (mol/L)
Apparent KmB (mol/L)
Apparent Ki (mol/L)
)
7.05
1.45
1.23
The initial rates were calculated from the linear portion of the
concentration–time profiles. In Fig. 7, the Lineweaver–Burk dou-
ble inversion was examined. One intersection at X-axis (inverse of
and in some cases negative values are obtained, which is clearly
meaningless [52,53]. To verify the application of ping-pong bi-bi
mechanism the data was analyzed by non-linear regression using
the Software Package Polymath 5.1 [9,25,53]. The apparent kinetic
parameters determined by Polymath 5.1 are given in Table 1. These
parameters were utilized to simulate the initial rates. A plot of sim-
ulated versus experimental data is made at various concentrations
of A to show that the experimental model fits the data very well
(data not shown). This demonstrates that the proposed model is
valid.
[7] G.D. Yadav, K.M. Devi, Chem. Eng. Sci. 59 (2004) 373–383.
[8] G.D. Yadav, I.V. Borkar, Ind. Eng. Chem. Res. 47 (2008) 3358–3363.
[9] G.D. Yadav, P.S. Lathi, J. Mol. Catal. B: Enzym. 27 (2004) 113–119.
[10] G.D. Yadav, S. Devendran, Process Biochem. 47 (2012) 496–502.
[11] A. Bajaj, P. Lohan, P.N. Jha, R. Mehrotra, J. Mol. Catal. B: Enzym. 62 (2010) 9–14.
[12] G.D. Yadav, S.R. Jadhav, Micropor. Mesopor. Mater. 86 (2005) 215–222.
[13] C. Sanfilippo, N. D’Antona, G. Nicolosi, Biotechnol. Lett. 26 (2004) 1815–1819.
[14] G.D. Yadav, K.M. Devi, J. Am. Oil Chem. Soc. 78 (2001) 347–351.
[15] G.D. Yadav, A.D. Sajgure, S.B. Dhoot, in: S.K. Bhattacharya (Ed.), Enzyme Mix-
tures and Complex Biosynthesis, Landes Biosciences, Austin, TX, 2007.
[16] G.D. Yadav, J.B. Sontakke, Int. J. Chem. React. Eng. 9 (2011) A77.
[17] J.B. Sontakke, G.D. Yadav, Ind. Eng. Chem. Res. 50 (2011) 12975–12983.
[18] G.D. Yadav, K.M. Devi, Biochem. Eng. J. 17 (2004) 57–63.
[19] G.D. Yadav, I.V. Borkar, J. Chem. Technol. Biotechnol. 84 (2009) 420–426.
[20] G.D. Yadav, I.V. Borkar, Process Biochem. 45 (2010) 586–592.
[21] A. Loupy (Ed.), Microwaves in Organic Synthesis, Wiley-VCH, Weinheim, 2002.
[22] J.M. Collins, N.E. Leadbeater, Org. Biomol. Chem. 5 (2007) 1141–1150.
[23] C.O. Kappe, A. Stadler, Microwaves in Organic and Medicinal Chemistry, Wiley-
VCH, Weinheim, 2006.
[24] A. de la Hoz, A. Dıaz-Ortiz, A. Moreno, Chem. Soc. Rev. 34 (2005) 164–178.
[25] G.D. Yadav, S.B. Dhoot, J. Mol. Catal. B: Enzym. 57 (2009) 34–39.
[26] G.D. Yadav, S.V. Pawar, Bioresour. Technol. 109 (2012) 1–6.
[27] G.D. Yadav, I.V. Borkar, AIChE J. 52 (2006) 1235–1247.
[28] G.D. Yadav, A.D. Sajgure, S.B. Dhoot, J. Chem. Technol. Biotechnol. 83 (2008)
1145–1153.
4. Conclusions
Isoamyl myristate was successfully synthesized by solvent-free
esterification reaction of isoamyl alcohol and myristic acid, cat-
alyzed by an immobilized lipase, under microwave irradiation.
Novozym 435 was found to be the best catalyst and microwave
irradiation reduced the reaction time. There was a synergism
between enzyme catalysis and microwave irradiation. Isoamyl
alcohol at high concentrations acted as an inhibitor. A kinetic
model was proposed by collecting both initial rate data as well
as concentration–time profiles for the reaction. A ping-pong bi-
bi mechanism was found to fit the data well for enzyme catalysis
under microwave irradiation in this solvent-free system.
[29] J.B. Sontakke, G.D. Yadav, J. Chem. Technol. Biotechnol. 86 (2011) 739–748.
[30] G.D. Yadav, P.H. Mehta, Ind. Eng. Chem. Res. 33 (9) (1994) 2198–2208.
[31] B. Narasimhana, V. Mouryab, A. Dhake, Bioorg. Med. Chem. Lett. 16 (2006)
3023–3029.
[32] G.V. Chowdary, M.N. Ramesh, S.G. Prapulla, Process Biochem. 36 (2000)
331–339.
[33] D. Bezbradica, D. Mijin, S.S. Marinkovic´, Z. Knezˇevic´, J. Mol. Catal. B: Enzym. 38
(2006) 11–16.
[34] A. Valério, R.L. Krüger, J.L. Ninow, F.C. Corazza, D. Oliveira, J.V. Oliveira, M.L.
Corazza, J. Agric. Food Chem. 57 (2009) 8350–8356.
[35] J. Uppenberg, S. Patkar, T. Bergfors, T.A. Jones, J. Mol. Biol. 235 (1994) 790–792.
[36] K.E. Jaeger, T. Eggert, Curr. Opin. Biotechnol. 13 (2002) 390–397.
[37] Novo Nordisk Product Sheet for Novozym 435, Lipozyme RM IM and Lipozyme
TL IM.
[38] V.F. Gotor, R. Brieva, V. Gotor, J. Mol. Catal. B: Enzym. 40 (2006) 111–120.
[39] M.C. Parker, T. Besson, S. Lamare, M.D. Legoy, Tetrahedron Lett. 37 (1996)
8383–8386.
Acknowledgments
[40] S. Banik, S. Bandyopadhyay, S. Ganguly, Bioresour. Technol. 87 (2003) 155–159.
[41] C. Lanne, S. Boeren, K. Vos, C. Veeger, Biotechnol. Bioeng. 30 (1987) 81–87.
[42] W. Huang, Y.M. Xia, H. Gao, Y.J. Fang, Y. Wang, Y. Fang, J. Mol. Catal. B: Enzym.
35 (2005) 113–116.
[43] G.D. Yadav, A.D. Sajgure, J. Chem. Technol. Biotechnol. 82 (2007) 964–970.
[44] P. Lidstrom, J. Tierney, B. Wathey, J. Westman, Tetrahedron 57 (2001)
9225–9283.
G.D.Y. acknowledges support for the personal chair from R.T.
Mody distinguished Professor Endowment and J.C. Bose National
fellowship from DST-GOI. P.A.T. acknowledges University Grants
Commission for awarding junior Research fellowship under its SAP
program. The authors thank Novo Nordisk, Denmark, for the gifts of
enzymes.
[45] A. Zaks, A.M. Klibanov, Proc. Natl. Acad. Sci. U.S.A. 82 (1985) 3192–3196.
[46] D. Desnulle, Adv. Enzymol. 23 (1961) 129–161.
[47] G.D. Yadav, P. Sivakumar, Biochem. Eng. J. 19 (2004) 101–107.
[48] G.D. Yadav, P.S. Lathi, Biochem. Eng. J. 16 (2003) 245–252.
[49] G.D. Yadav, P.S. Lathi, J. Mol. Catal. A: Chem. 223 (2004) 51–56.
[50] I.H. Segel, Enzyme Kinetics, Wiley, New York, 1975, p. 273.
[51] T. Kakkar, H. Boxenbaum, M. Mayersohn, Drug Metab. Dispos. 27 (1999)
756–762.
Appendix A. Supplementary data
Supplementary data associated with this article can be
[52] J.E. Dowd, D.S. Riggs, J. Biol. Chem. 2 (1965) 863–869.
[53] R.J. Ritchie, T. Prvan, Biochem. Educ. 24 (4) (1996) 196–206.