J . Org. Chem. 1998, 63, 8995-8997
8995
Th er m od yn a m ic Sta bility of Tr ich lor ocyclop r op en yl Ca tion . An
Exp er im en ta l (F TICR) a n d Com p u ta tion a l [G2(MP 2)] Stu d y†
J .-L. M. Abboud,*,‡ O. Castan˜o,§ M. Herreros,‡ I. Leito,‡ R. Notario,*,‡ and K. Sak‡
Instituto de Quı´mica Fı´sica “Rocasolano”, C. S. I. C., c/ Serrano 119. E-28006, Madrid, Spain, and
Departamento de Quı´mica Fı´sica, Universidad de Alcala´. E-28871, Alcala´ de Henares, Madrid, Spain
Received J uly 14, 1998
The standard Gibbs energy change for the halide transfer between tert-butyl chloride and
trichlorocyclopropenyl cation has been determined by means of Fourier transform ion cyclotron
resonance mass spectrometry. Trichlorocyclopropenyl cation is found to be substantially more stable
than tert-butyl and 1-adamantyl cations. This reaction and cognate processes were also studied at
the ab initio G2(MP2) level. The agreement between experimental and calculated changes of
thermodynamic state functions is remarkably good. On the basis of these results, isodesmic and
homodesmotic reactions were constructed. They led to the delocalization energy in 1 and to the
quantitative assessment of substituent effects on the stability of the aromatic 2π-electron system.
In tr od u ction
Cyclopropenium ion, (CH)3+, is the simplest Hu¨ckel 4n
+ 2 π-electron monocyclic system. This ion and cognate
species have recently received considerable attention.1 Its
standard enthalpy of formation has been determined
experimentally (1075 kJ mol-1)2 and calculated at the G2
defining the onset of reactions 2a and 2b under the same
experimental conditions:
level (1074 kJ mol-1).1b Here we report the results of a
quantitative experimental study of the thermodynamic
stability of trichlorocyclopropenyl ion, (CCl)3+,1 in the gas
phase. To our knowledge, this is the first study of this
kind on substituted cyclopropenium ions.1 Data thus
obtained are compared to quantum-mechanical calcula-
tions at the G2(MP2) level.3
∆G°(1), the standard Gibbs energy change for the
chloride exchange between tert-butyl chloride (2) and 1
in the gas phase [reaction 1], was determined by means
of Fourier transform ion cyclotron resonance spectrom-
etry (FT ICR).4
2(g) + B1H+(g) f 4(g) + HCl(g) + B1(g) (2a)
3(g) + B2H+(g) f 1(g) + HCl(g) + B2(g) (2b)
Exp er im en ta l Section
A. Th e F T ICR Sp ectr om eter . The study was carried
out on a modified Bruker CMS 47 FT ICR mass spectrometer4c
used in previous studies.5,7 A detailed description is given in
refs 5a and 7. Some modifications have been introduced with
respect to the standard instrument. They are described in
these references. The substancial field strength of the supra-
conducting magnet, 4.7 T, allows the monitoring of ion-
molecule reactions for relatively long periods of time, and also,
the use of relatively high pressures (of the order of 5 × 10-4
mbar) during a few seconds.
Use was made of a bracketting technique known as
the “dissociative proton attachment method” (DPA).5 In
this method, ∆G°(1) is given by the difference of the gas-
phase basicities,6 GB, of the two bases, B1 and B2,
B. DP A Exp er im en ts. The basic concepts of the method
have been developed in ref 5. The experimental technique is
quite similar to that used in these studies. Some minor
changes are introduced in order to avoid the unwanted
deprotonation of R+(g) by B(g) (this possibility exists in the
case of t-Bu+(g)). In general, the reference base B is introduced
into the high-vacuum section of the instrument and subject
to electron ionization (using nominal energies in the range of
10-13 eV). Nominal pressures of B are ca. 2 × 10-7 mbar.
Charged fragments from B act as primary proton sources. In
general, after 1-2 s, the main ion present is BH+(g). After
† Dedicated to Professor Erwin Buncel.
‡ Instituto de Qu´ıica F´ısica “Rocasolano”.
§ Universidad de Alcala´.
(1) See, e.g., the following and references therein: (a) Glukhotsev,
M. N. J . Chem. Educ. 1997, 74, 132-136. (b) Glukhotsev, M. N.; Laiter,
S.; Pross, A. J . Phys. Chem. 1996, 100, 17801-17806. (c) Burk, P.;
Abboud, J .-L. M.; Koppel, I. A. J . Phys. Chem. 1996, 100, 6992-6997.
(d) J emmis, E. D.; Srinivas, G. N.; Leszczynski, J .; Kapp, J .; Korkin,
A. A.; Schleyer, P. v. R. J . Am. Chem. Soc. 1995, 117, 11361-11362.
(e) Budzelaar, P. H. M.; Schleyer, P. v. R. J . Am. Chem. Soc. 1986,
108, 3967-3970. (f) An important experimental study of C3Cl3+AlCl4
(X-ray structure) and HF/6-311G(d,p) calculations on C3Cl3 have
recently been published: Clark, G. R.; Taylor, M. J .; Steele, D. J . Chem.
Soc., Faraday Trans. 1993, 89, 3597-3601.
-
+
(2) Lias, S. G.; Bartmess, J . E.; Liebman, J . F.; Holmes, J . L.; Levin,
R. D.; Mallard, W. G. J . Phys. Chem. Ref. Data 1988, 17, Suppl. 1.
(3) Curtiss, L. A.; Raghavachari, K.; Pople, J . A. J . Chem. Phys.
1993, 98, 1293-1298.
(4) (a) Bowers, M. T.; Aue, D. H.; Webb, H. M.; McIver, R. T. J . Am.
Chem. Soc. 1971, 93, 4314-4315. (b) Freiser, B. In Techniques for the
Study of Ion-Molecule Reactions; Farrar, J . M., Saunders, W., J r., Eds.;
Wiley: NewYork, 1988; Chapter 2. (c) Laukien, F. H.; Allemann, M.;
Bischofberger, P.; Grossmann, P.; Kellerhals, H. P. Kopfel, P. In Fourier
Transform Mass Spectrometry. Evolution, lnnovations and Applica-
tions; Buchanan, M. V., Ed.; ACS Symposium Series 359; American
Chemical Society: Washington, DC, 1987; Chapter 5.
(5) (a) Abboud, J .-L. M.; Castan˜o, O.; Herreros, M.; Elguero, J .;
J agerovic, N.; Notario, R.; Sak, K. lnt. J . Mass Spectrom., Ion Proc.
1998, 175, 35-40. (b) Abboud, J .-L. M.; Castan˜o, O.; Della, E. W.;
Herreros, M.; Mu¨ller, P.; Notario, R.; Rossier, J .-C. J . Am. Chem. Soc.
1997, 119, 2262-2266. (c) Abboud, J .-L. M.; Notario, R.; Ballesteros,
E.; Herreros, M.; Mo´, O.; Ya´n˜ez, M.; Elguero, J .; Boyer, G.; Claramunt,
R. J . Am. Chem. Soc. 1994, 116, 2486-2492.
(6) The gas-phase basicity GB(B) of base B is the standard Gibbs
energy change pertaining to the reaction: BH+(g) f B(g) + H+(g). See,
e.g., ref 2.
(7) Abboud, J .-L. M.; Herreros, M.; Notario, R.; Esseffar, M.; Mo´,
O.; Ya´n˜ez, M. J . Am. Chem. Soc. 1996, 118, 1126-1130.
10.1021/jo981369y CCC: $15.00 © 1998 American Chemical Society
Published on Web 10/30/1998