G Model
CCLET 3691 1–4
4
H.-R. Zheng et al. / Chinese Chemical Letters xxx (2016) xxx–xxx
[14] L.Y. Niu, Y.Z. Chen, H.R. Zheng, et al., Design strategies of fluorescent probes for
selective detection among biothiols, Chem. Soc. Rev. 44 (2015) 6143–6160.
[15] X. Zhou, S. Lee, Z.C. Xu, J. Yoon, Recent progress on the development of chemo-
sensors for gases, Chem. Rev. 115 (2015) 7944–8000.
[16] L.Y. Niu, Y.S. Guan, Y.Z. Chen, et al., BODIPY-based ratiometric fluorescent sensor
for highly selective detection of glutathione over cysteine and homocysteine, J.
Am. Chem. Soc. 134 (2012) 18928–18931.
[17] V.S. Lin, C.J. Chang, Fluorescent probes for sensing and imaging biological hydro-
gen sulfide, Curr. Opin. Chem. Biol. 16 (2012) 595–601.
[18] C.C. Zhao, X.L. Zhang, K.B. Li, et al., Fo¨rster resonance energy transfer switchable
self-assembled micellar nanoprobe: ratiometric fluorescent trapping of endoge-
nous H2S generation via fluvastatin-stimulated upregulation, J. Am. Chem. Soc.
137 (2015) 8490–8498.
[19] X. Wang, J. Sun, W.H. Zhang, et al., A near-infrared ratiometric fluorescent probe
for rapid and highly sensitive imaging of endogenous hydrogen sulfide in living
cells, Chem. Sci. 4 (2013) 2551–2556.
[20] Z.S. Wu, Y.L. Feng, B. Geng, J.Y. Liu, X.J. Tang, Fluorogenic sensing of H2S in blood
and living cells via reduction of aromatic dialkylamino N-oxide, RSC Adv. 4 (2014)
30398–30401.
[21] H.J. Peng, Y.F. Cheng, C.F. Dai, et al., A fluorescent probe for fast and quantitative
detection of hydrogen sulfide in blood, Angew. Chem. Int. Ed. 50 (2011) 9672–9675.
[22] S. Chen, Z.J. Chen, W. Ren, H.W. Ai, Reaction-based genetically encoded fluores-
cent hydrogen sulfide sensors, J. Am. Chem. Soc. 134 (2012) 9589–9592.
[23] K.J. Wu, G.Q. Li, Y. Li, L.X. Dai, S.L. You, Reaction-based genetically encoded
fluorescent hydrogen sulfide sensors, Chem. Commun. 47 (2011) 493–495.
[24] C.R. Liu, J. Pan, S. Li, et al., Capture and visualization of hydrogen sulfide by a
fluorescent probe, Angew. Chem. Int. Ed. 50 (2011) 10327–10329.
[25] C.R. Liu, B. Peng, S. Li, et al., Reaction based fluorescent probes for hydrogen
sulfide, Org. Lett. 14 (2012) 2184–2187.
[26] K. Sasakura, K. Hanaoka, N. Shibuya, et al., Development of a highly selective
fluorescenceprobeforhydrogensulfide,J.Am. Chem.Soc. 133(2011)18003–18005.
[27] F.P. Hou, L. Huang, P.X. Xi, et al., A retrievable and highly selective fluorescent
probe for monitoring sulfide and imaging in living cells, Inorg. Chem. 51 (2012)
2454–2460.
[28] X.W. Cao, W.Y. Lin, K.B. Zheng, L.W. He, A near-infrared fluorescent turn-on probe
for fluorescence imaging of hydrogen sulfide in living cells based on thiolysis of
dinitrophenyl ether, Chem. Commun. 48 (2012) 10529–10531.
[29] T.Y. Liu, Z.C. Xu, D.R. Spring, J.N. Cui, A lysosome-targetable fluorescent probe for
imaging hydrogen sulfide in living cells, Org. Lett. 15 (2013) 2310–2313.
[30] S.D. Liu, L.W. Zhang, P.P. Zhou, et al., HBT-based chemosensors for the detection of
fluoride through deprotonation process: experimental and DFT studies, RSC Adv.
5 (2015) 19983–19988.
[31] L.H. Geng, X.F. Yang, Y.G. Zhong, Z. Li, H. Li, ‘‘Quinone–phenol’’ transduction
activated excited-state intramolecular proton transfer: a new strategy toward
ratiometric fluorescent probe for sulfite in living cells, Dyes Pigm. 120 (2015)
213–219.
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
168
169
170
171
green channel. By contrast, when HeLa cells were pretreated with
NaHS (200 mol/L) before incubated with probe 1 (20 mol/L) for
45 min, the obvious fluorescence was observed. It revealed that
m
m
probe 1 has potential for visualizing H2S levels in living cells.
172
4. Conclusion
173
174
175
176
177
178
179
180
181
182
183
184
In conclusion, we designed and synthesized a novel fluorescent
probe 1 for the detection of H2S based on ESIPT mechanism with
the assistance of CTAB. As the hydroxyl group is protected by 2-
(bromomethyl)benzoate, probe 1 showed weak enol-like fluores-
cence at 350 nm. The 2-(bromomethyl)benzoate group showed
fast response to H2S through cascade reaction and released free
HBT, which showed strong fluorescence at 484 nm in CTAB
micelles. The emission at 484 nm showed linear relationship with
the H2S concentration at 0–100
mmol/L with the detection limit of
0.50 mol/L. The high selectivity and sensitivity of our probe to
m
H2S may give new insights for the development of fluorescent
probe to selectively detect H2S in biological systems.
185
186
Acknowledgments
We thank Prof. Z. Niu and Dr. Y. Tian for providing HeLa cells.
187 Q2 This work was financially supported by the 973 Program (no.
188
189
190
191
2013CB933800), National Natural Science Foundation of China
(nos. 21525206, 21402216, 21272243), the Fundamental Research
Funds for the Central Universities and Beijing Municipal Commis-
sion of Education.
192
References
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
[1] C. Szabo´, Hydrogen sulphide and its therapeutic potential, Nat. Rev. Drug. Discov.
6 (2007) 917–935.
[2] M. Ishigami, K. Hiraki, K. Umemura, et al., A source of hydrogen sulfide and a
mechanism of its release in the brain, Antioxid. Redox Signal. 11 (2009) 205–214.
[3] G.A. Benavides, G.L. Squadrito, R.W. Mills, et al., Hydrogen sulfide mediates the
vasoactivity of garlic, Proc. Natl. Acad. Sci. U.S.A. 104 (2007) 17977–17982.
[4] S. Singh, D. Padovani, R.A. Leslie, T. Chiku, R. Banerjee, Relative contributions of
cystathionine b-synthase and g-cystathionase to H2S biogenesis via alternative
trans-sulfuration reactions, J. Biol. Chem. 284 (2009) 22457–22466.
[5] S. Singh, R. Banerjee, PLP-dependent H2S biogenesis, Biochim. Biophys. Acta 1814
(2011) 1518–1527.
[6] K. Eto, T. Asada, K. Arima, T. Makifuchi, H. Kimura, Brain hydrogen sulfide is
severely decreased in Alzheimer’s disease, Biochem. Biophys. Res. Commun. 293
(2002) 1485–1488.
[7] P. Kamoun, M.-C. Belardinelli, A. Chabli, K. Lallouchi, B. Chadefaux-Vekemans,
Endogenous hydrogen sulfide overproduction in Down syndrome, Am. J. Med.
Genet. A 116 (2003) 310–311.
[8] W. Yang, G.D. Yang, X.M. Jia, L.Y. Wu, R. Wang, Activation of KATP channels by H2S
in rat insulin-secreting cells and the underlying mechanisms, J. Physiol. (Lond.)
569 (2005) 519–531.
[9] S. Fiorucci, E. Antonelli, A. Mencarelli, et al., The third gas: H2S regulates perfusion
pressure in both the isolated and perfused normal rat liver and in cirrhosis,
Hepatology 42 (2005) 539–548.
[10] L.M. Siegel, A direct microdetermination for sulfide, Anal. Biochem. 11 (1965)
126–132.
[11] E. Fischer, Formation of methylene blue in response to hydrogen sulfide, Ber.
Dtsch. Chem. Ges. 16 (1983) 2234–2236.
[32] S. Sahana, G. Mishra, S. Sivakumar, P.K. Bharadwaj, A 2-(2[Prime or minute]-
hydroxyphenyl)benzothiazole (HBT)-quinoline conjugate: a highly specific fluo-
rescent probe for Hg2+ based on ESIPT and its application in bioimaging, Dalton
Trans. 44 (2015) 20139–20146.
[33] S. Goswami, A. Manna, S. Paul, et al., FRET based ‘red-switch’ for Al3+ over ESIPT
based ‘green-switch’ for Zn2+: dual channel detection with live-cell imaging on a
dyad platform, RSC Adv. 4 (2014) 34572–34576.
[34] X.F. Yang, Q. Huang, Y.G. Zhong, et al., A dual emission fluorescent probe enables
simultaneous detection of glutathione and cysteine/homocysteine, Chem. Sci. 5
(2014) 2177–2183.
[35] Q.S. Liu, C.L. Zhang, X.Q. Wang, et al., Benzothiazole-pyimidine-based BF2 com-
plex for selective detection of cysteine, Chem. Asian J. 11 (2016) 202–206.
[36] C.C. Zhao, X.A. Li, F.Y. Wang, Target-triggered NIR emission with a large stokes
shift for the detection and imaging of cysteine in living cells, Chem. Asian J. 9
(2014) 1777–1781.
[37] S. Goswami, S. Das, K. Aich, et al., A chemodosimeter for the ratiometric detection
of hydrazine based on return of ESIPT and its application in live-cell imaging, Org.
Lett. 15 (2013) 5412–5415.
[38] D.P. Murale, H. Kim, W.S. Choi, D.G. Churchill, Highly selective excited state
intramolecular proton transfer (ESIPT)-based superoxide probing, Org. Lett. 15
(2013) 3946–3949.
[39] S.M. Aly, A. Usman, M. AlZayer, et al., Solvent-dependent excited-state hydrogen
transfer and intersystem crossing in 2-(20-Hydroxyphenyl)-Benzothiazole, J.
Phys. Chem. B 119 (2015) 2596–2603.
[40] A.R. Lippert, E.J. New, C.J. Chang, Reaction-based fluorescent probes for selective
imaging of hydrogen sulfide in living cells, J. Am. Chem. Soc. 133 (2011) 10078–
10080.
[12] U. Hannestad, S. Margheri, B. So¨rbo, A sensitive gas chromatographic method for
determination of protein associated sulfur, Anal. Biochem. 178 (1989) 394–398.
[13] J. Furne, A. Saeed, M.D. Levitt, Whole tissue hydrogen sulfide concentrations are
orders of magnitude lower than presently accepted values, Am. J. Physiol. Regul.
Integr. Comp. Physiol. 295 (2008) 1479–1485.
225
Please cite this article in press as: H.-R. Zheng, et al., Cascade reaction-based fluorescent probe for detection of H2S with the assistance of