McHowat et al.
2-Chlorofatty Aldehydes Alter Endothelial Function
2-ClFALD treated endothelial cells in the absence of a response
with adhesion molecule surface expression (e.g., in HKEC).
AUTHOR CONTRIBUTIONS
DF was responsible for oversight of all aspects of studies
and manuscript preparation. JM performed endothelial
cell functional assays and manuscript preparation. SS
performed endothelial cell sub cellular localization studies and
manuscript preparation.
DATA AVAILABILITY STATEMENT
All datasets generated for this study are included in the
article/supplementary material.
FUNDING
This study was supported (in part) by research funding
from the National Institutes of Health R01 GM-
ETHICS STATEMENT
The studies involving human participants were reviewed 115553 and R01 GM129508 to DF. The content is
and approved by the Saint Louis University IRB. The solely the responsibility of the authors and does not
patients/participants provided their written informed consent necessarily represent the official views of the National
to participate in this study.
Institutes of Health.
Ford, D. A., Honavar, J., Albert, C. J., Duerr, M. A., Oh, J.-Y., Doran, S., et al.
(2016). Formation of chlorinated lipids post-chlorine gas exposure. J. Lipid Res.
Gross, R. W. (1985). Identification of plasmalogen as the major phospholipid
constituent of cardiac sarcoplasmic reticulum. Biochemistry 24, 1662–1668.
REFERENCES
Ait-Oufella, H., Maury, E., Lehoux, S., Guidet, B., and Offenstadt, G. (2010).
The endothelium: physiological functions and role in microcirculatory failure
Albert, C. J., Crowley, J. R., Hsu, F. F., Thukkani, A. K., and Ford, D. A. (2001).
Reactive chlorinating species produced by myeloperoxidase target the vinyl
ether bond of plasmalogens: identification of 2-chlorohexadecanal. J. Biol.
Anbukumar, D. S., Shornick, L. P., Albert, C. J., Steward, M. M., Zoeller, R. A.,
Neumann, W. L., et al. (2010). Chlorinated lipid species in activated human
neutrophils: lipid metabolites of 2-chlorohexadecanal. J. Lipid Res. 51, 1085–
Halland, N., Braunton, A., Bachmann, S., Marigo, M., and Jorgensen, K. A. (2004).
Direct organocatalytic asymmetric alpha-chlorination of aldehydes. J. Am.
Harrison, J. E., and Schultz, J. (1976). Studies on the chlorinating activity of
myeloperoxidase. J. Biol. Chem. 251, 1371–1374.
Hartman, C. L., Duerr, M. A., Albert, C. J., Neumann, W. L., McHowat, J., and
Ford, D. A. (2018). 2-chlorofatty acids induce weibel-palade body mobilization.
Beckett, C. S., Kell, P. J., Creer, M. H., and McHowat, J. (2007). Phospholipase
a2-catalyzed hydrolysis of plasmalogen phospholipids in thrombin-stimulated
Brahmbhatt, V. V., Albert, C. J., Anbukumar, D. S., Cunningham, B. A., Neumann,
W. L., and Ford, D. A. (2010). {omega}-oxidation of {alpha}-chlorinated fatty
acids: Identification of {alpha}-chlorinated dicarboxylic acids. J. Biol. Chem.
Chilton, F. H., and Connell, T. R. (1988). 1-ether-linked phosphoglycerides. Major
endogenous sources of arachidonate in the human neutrophil. J. Biol. Chem.
263, 5260–5265.
Crea, F., Camici, P. G., and Bairey Merz, C. N. (2014). Coronary microvascular
dysfunction: an update. Eur. Heart J. 35, 1101–1111.
De Backer, D., Orbegozo Cortes, D., Donadello, K., and Vincent, J.-L. (2014).
Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic
Dorman, R. V., Dreyfus, H., Freysz, L., and Horrocks, L. A. (1976). Ether
lipid content of phosphoglycerides from the retina and brain of chicken
Duerr, M. A., Aurora, R., and Ford, D. A. (2015). Identification of glutathione
adducts of alpha-chlorofatty aldehydes produced in activated neutrophils.
Etzioni, A. (1996). Adhesion molecules-their role in health and disease. Pediatr.
Res. 39, 191–198.
Hazen, S. L., Hall, C. R., Ford, D. A., and Gross, R. W. (1993). Isolation of a human
myocardial cytosolic phospholipase a2 isoform. Fast atom bombardment
mass spectroscopic and reverse-phase high pressure liquid chromatography
identification of choline and ethanolamine glycerophospholipid substrates.
Hazen, S. L., Hsu, F. F., Duffin, K., and Heinecke, J. W. (1996). Molecular
chlorine generated by the myeloperoxidase-hydrogen peroxide-chloride system
of phagocytes converts low density lipoprotein cholesterol into a family of
Hsu, F. F., Turk, J., Thukkani, A. K., Messner, M. C., Wildsmith, K. R., and Ford,
D. A. (2003). Characterization of alkylacyl, alk-1-enylacyl and lyso subclasses
of glycerophosphocholine by tandem quadrupole mass spectrometry with
Ijzerman, R. G., Jongh, R. T. D., Beijk, M. A. M., Van Weissenbruch, M. M.,
Delemarre-van De Waal, H. A., Serné, E. H., et al. (2003). Individuals
at increased coronary heart disease risk are characterized by an impaired
microvascular function in skin. Eur. J. Clin. Invest. 33, 536–542. doi: 10.1046/j.
Klebanoff, S. J., Kettle, A. J., Rosen, H., Winterbourn, C. C., and Nauseef,
W. M. (2013). Myeloperoxidase: a front-line defender against phagocytosed
Langer, H. F., and Chavakis, T. (2009). Leukocyte-endothelial interactions in
inflammation. J. Cell. Mol. Med. 13, 1211–1220.
McHowat, J., Jones, J. H., and Creer, M. H. (1997). Gradient elution reversed-
phase chromatographic isolation of individual glycerophospholipid molecular
Ford, D. A. (2010). Lipid oxidation by hypochlorous acid: chlorinated lipids in
atherosclerosis and myocardial ischemia. Clin. Lipidol. 5, 835–852. doi: 10.
Ford, D. A., and Gross, R. W. (1989). Plasmenylethanolamine is the major storage
depot for arachidonic acid in rabbit vascular smooth muscle and is rapidly
hydrolyzed after angiotensin ii stimulation. Proc. Natl. Acad. Sci. U.S.A. 86,
Meyer, N. J., Reilly, J. P., Feng, R., Christie, J. D., Hazen, S. L., Albert, C. J.,
et al. (2017). Myeloperoxidase-derived 2-chlorofatty acids contribute to human
sepsis mortality via acute respiratory distress syndrome. J. Clin. Invest. Insight
11