Angewandte Chemie International Edition
10.1002/anie.201800260
COMMUNICATION
of Ndh-2 activity. Inhibition of Ndh-2 not only prevents ATP
synthesis through blockade of the ETC, but also disturbs the
intracellular redox balance which leads to an array of metabolic
consequences. The identification of inhibitor from a biochemical
screen that have cellular activity is especially encouraging, given
[6]
D. Bald, C. Villellas, P. Lu, A. Koul, MBio 2017, 8. [7]
A. Koul, N. Dendouga, K. Vergauwen, B.
Molenberghs, L. Vranckx, R. Willebrords, Z. Ristic, H.
Lill, I. Dorange, J. Guillemont, D. Bald, K. Andries, Nat
Chem Biol 2007, 3, 323-324.
aP. S. Shirude, B. Paul, N. Roy Choudhury, C. Kedari,
B. Bandodkar, B. G. Ugarkar, ACS Med Chem Lett
2012, 3, 736-740; bW. D. Hong, P. D. Gibbons, S. C.
Leung, R. Amewu, P. A. Stocks, A. Stachulski, P.
Horta, M. L. S. Cristiano, A. E. Shone, D. Moss, A.
Ardrey, R. Sharma, A. J. Warman, P. T. P. Bedingfield,
N. E. Fisher, G. Aljayyoussi, S. Mead, M. Caws, N. G.
Berry, S. A. Ward, G. A. Biagini, P. M. O'Neill, G. L.
Nixon, J Med Chem 2017, 60, 3703-3726.
A. J. Warman, T. S. Rito, N. E. Fisher, D. M. Moss, N.
G. Berry, P. M. O'Neill, S. A. Ward, G. A. Biagini, J
Antimicrob Chemother 2013, 68, 869-880.
S. P. Rao, S. Alonso, L. Rand, T. Dick, K. Pethe, Proc
Natl Acad Sci U S A 2008, 105, 11945-11950.
E. A. Weinstein, T. Yano, L. S. Li, D. Avarbock, A.
Avarbock, D. Helm, A. A. McColm, K. Duncan, J. T.
Lonsdale, H. Rubin, Proc Natl Acad Sci U S A 2005,
[8]
past low success rates in these screens in the antimicrobial
field.[
19]
The scaffolds identified here act on Ndh and NdhA
differently even though their protein sequences are highly
conserved. We believe it is reasonable to suggest that the TQZ
and THI scaffolds, occupy the quinone and NADH binding sites,
respectively, given their structural resemblance to the quinone
and adenine molecules that normally reside in those positions.[
Structural analysis coupled with kinetic enzymatic analysis of the
inhibitors would be the best way to gain more insight into their
20]
[9]
inhibitory mechanism.[
21]
Future studies will also include utilizing
[10]
our Ndh-2 inhibitors to explore the roles of Ndh-2 and Nuo in vivo,
and will allow us to shutdown both or one copies of Ndh-2,
respectively.
[11]
1
02, 4548-4553.
S. S. Lin, U. Gross, W. Bohne, Mol Microbiol 2011, 82,
09-221.
[
12]
2
Acknowledgements
[13]
aD. Molenaar, M. E. van der Rest, A. Drysch, R. Yucel,
J Bacteriol 2000, 182, 6884-6891; bC. Vilcheze, T. R.
Weisbrod, B. Chen, L. Kremer, M. H. Hazbon, F.
Wang, D. Alland, J. C. Sacchettini, W. R. Jacobs, Jr.,
Antimicrob Agents Chemother 2005, 49, 708-720.
M. Nguyen, A. Quemard, S. Broussy, J. Bernadou, B.
Meunier, Antimicrob Agents Chemother 2002, 46,
2137-2144.
The authors thank Drs. Cliff Barry and Helena Boshoff for
technical support or helpful discussion. This work was supported,
in part, by National Key R&D Program of China 2017YFA0505400,
Strategic Priority Research Program of CAS,XDPB0304, CAS
Pioneer Hundred Talents Program, the Bill and Melinda Gates
Foundation, the Global Alliance for TB Drug Development, and
NIH Grants AI026170 (WRJ) and AI051519 (WRJ). We also
ackowlwdge Ms. Jennifer Yano for her technical assistance.
[14]
[15]
16]
E. Sugimoto, L. I. Pizer, J Biol Chem 1968, 243, 2081-
2089.
[
K. Hards, J. R. Robson, M. Berney, L. Shaw, D. Bald,
A. Koul, K. Andries, G. M. Cook, J Antimicrob
Chemother 2015, 70, 2028-2037.
Keywords: Ndh-2 • Oxidative phosphorylation • ATP production
•
Tuberculosis • Drug discovery
[17]
G. M. Cook, K. Hards, E. Dunn, A. Heikal, Y. Nakatani,
C. Greening, D. C. Crick, F. L. Fontes, K. Pethe, E.
Hasenoehrl, M. Berney, Microbiol Spectr 2017, 5.
K. Pethe, P. Bifani, J. Jang, S. Kang, S. Park, S. Ahn,
J. Jiricek, J. Jung, H. K. Jeon, J. Cechetto, T.
[18]
References
Christophe, H. Lee, M. Kempf, M. Jackson, A. J.
Lenaerts, H. Pham, V. Jones, M. J. Seo, Y. M. Kim, M.
Seo, J. J. Seo, D. Park, Y. Ko, I. Choi, R. Kim, S. Y.
Kim, S. Lim, S. A. Yim, J. Nam, H. Kang, H. Kwon, C.
T. Oh, Y. Cho, Y. Jang, J. Kim, A. Chua, B. H. Tan, M.
B. Nanjundappa, S. P. Rao, W. S. Barnes, R. Wintjens,
J. R. Walker, S. Alonso, S. Lee, J. Kim, S. Oh, T. Oh,
U. Nehrbass, S. J. Han, Z. No, J. Lee, P. Brodin, S. N.
Cho, K. Nam, J. Kim, Nat Med 2013, 19, 1157-1160.
R. Tommasi, D. G. Brown, G. K. Walkup, J. I.
[1]
[2]
[3]
V. Dartois, C. E. Barry, 3rd, Bioorg Med Chem Lett
013, 23, 4741-4750.
G. M. Cook, K. Hards, C. Vilcheze, T. Hartman, M.
Berney, Microbiol Spectr 2014, 2.
K. Andries, P. Verhasselt, J. Guillemont, H. W.
Gohlmann, J. M. Neefs, H. Winkler, J. Van Gestel, P.
Timmerman, M. Zhu, E. Lee, P. Williams, D. de
Chaffoy, E. Huitric, S. Hoffner, E. Cambau, C. Truffot-
Pernot, N. Lounis, V. Jarlier, Science 2005, 307, 223-
2
[19]
[20]
[21]
Manchester, A. A. Miller, Nat Rev Drug Discov 2015,
14, 529-542.
2
27.
C. M. Sassetti, D. H. Boyd, E. J. Rubin, Mol Microbiol
003, 48, 77-84.
A. Heikal, Y. Nakatani, E. Dunn, M. R. Weimar, C. L.
Day, E. N. Baker, J. S. Lott, L. A. Sazanov, G. M.
Cook, Mol Microbiol 2014, 91, 950-964.
T. Yano, M. Rahimian, K. K. Aneja, N. M. Schechter,
H. Rubin, C. P. Scott, Biochemistry 2014, 53, 1179-
[
4]
5]
2
[
D. Awasthy, A. Ambady, A. Narayana, S. Morayya, U.
Sharma, Gene 2014, 550, 110-116.
1190.
This article is protected by copyright. All rights reserved.