Paper
RSC Advances
energies calibrated to adventitious carbon (285 eV). Brunauer– 12 R. M. Barrer, Hydrothermal chemistry of zeolites, Academic
Emmett–Teller (BET) surface area measurements were carried Press, London, New York, 1982.
out using a Micromeritics ASAP 2420 Accelerated Surface Area 13 O. Larlus, V. Valtchev, J. Patarin, A. C. Faust and B. Maquin,
and Porosimetry System. Each sample was weighed to ca. 0.2 g
Microporous Mesoporous Mater., 2002, 56, 175–184.
and then degassed at 150 ꢁC in N2 for 12 hours before analysis. 14 V. Valtchev, B. J. Schoeman, J. Hedlund, S. Mintova and
J. Sterte, Zeolites, 1996, 17, 408–415.
15 V. Valtchev, J. Hedlund, B. J. Schoeman, J. Sterte and
S. Mintova, Microporous Mater., 1997, 8, 93–101.
16 R. J. Tayade, R. G. Kulkarni and R. V. Jasra, Ind. Eng. Chem.
Res., 2007, 46, 369–376.
17 S. Sampath, H. Uchida and H. Yoneyama, J. Catal., 1994, 149,
Photocatalytic tests
Resazurin ink was prepared following a procedure from the
literature.39 The ink consisted of 0.3 g of hydroxy ethyl cellulose
(HEC) polymer, 3 g of glycerol and 0.04 g of resazurin dye in an
aqueous solution that was aged for 24 hours at 3–5 ꢁC. An
189–194.
aerosol spray-gun was lled with this indicator ink and used to
ˇ´
´
´
18 K. Kocı, L. Obalova and Z. Lacny, Chem. Pap., 2008, 62, 1–9.
19 R. J. Tayade, R. G. Kulkarni and R. V. Jasra, Ind. Eng. Chem.
Res., 2006, 46, 369–376.
coat the specied surface area of the samples evenly. The pho-
tocatalytic reduction of resazurin was observed by digital
photographic methods. For the stearic acid test, a thin layer of
the acid was deposited by dip-coating the lms into a 0.05 M
chloroform solution. The lms were irradiated under UVA
illumination (l ¼ 365 nm) using BLB lamps (Vilber-Lourmat,
2 ꢂ 8 W, 1 and 3.7 mW cmꢀ2 for the ink and stearic acid
tests, respectively). The mineralisation of stearic acid bands at
2700–3000 cmꢀ1 was monitored using a Perkin-Elmer RX-I
Fourier Transform Infrared Spectrometer.
20 Y. Xu and C. H. Langford, J. Phys. Chem. B, 1997, 101, 3115–
3121.
21 H. Ichiura, T. Kitaoka and H. Tanaka, J. Mater. Sci., 2002, 37,
2937–2941.
22 S. Fukahori, H. Ichiura, T. Kitaoka and H. Tanaka, Environ.
Sci. Technol., 2003, 37, 1048–1051.
23 S. Kumar, T. M. Davis, H. Ramanan, R. L. Penn and
M. Tsapatsis, J. Phys. Chem. B, 2007, 111, 3398–3403.
24 A. J. Maira, W. N. Lau, C. Y. Lee, P. L. Yue, C. K. Chan and
K. L. Yeung, Chem. Eng. Sci., 2003, 58, 959–962.
25 A. Kazas, S. Kellici, J. A. Darr and I. P. Parkin, J. Photochem.
Photobiol., A, 2009, 204, 183–190.
26 K. Page, R. G. Palgrave, I. P. Parkin, M. Wilson, S. L. P. Savin
and A. V. Chadwick, J. Mater. Chem., 2007, 17, 95–104.
27 A. Rampaul, I. P. Parkin, S. A. O'Neill, J. DeSouza, A. Mills
and N. Elliott, Polyhedron, 2003, 22, 35–44.
28 I. Georgiadou, N. Spanos, C. Papadopoulou, H. Matralis,
C. Kordulis and A. Lycourghiotis, Colloids Surf., A, 1995,
98, 155–165.
Acknowledgements
Kevin Reeves, Steven Firth and Martin Vickers are thanked for
assistance with SEM, Raman spectroscopy and XRD instru-
ments. FTO is funded by The Turkish Ministry of National
Education.
References
1 T. Ochiai and A. Fujishima, J. Photochem. Photobiol., C, 2012,
13, 247–262.
2 X. Zhang, Y. Li, Z. Lin and S. Zhang, in Advanced Materials,
Pts 1–4, ed. Z. Cao, X. Q. Cao, L. Sun and Y. H. He, 2011,
vol. 239–242, pp. 571–574.
29 S. Arab, D. Li, N. Kinsinger, F. Zaera and D. Kisailus, J. Mater.
Res., 2011, 26, 2653–2659.
30 J. L. Ong, L. C. Lucas, G. N. Raikar and J. C. Gregory, Appl.
Surf. Sci., 1993, 72, 7–13.
31 T. Gross, M. Ramm, H. Sonntag, W. Unger, H. M. Weijers
and E. H. Adem, Surf. Interface Anal., 1992, 18, 59–64.
32 M. L. Miller and R. W. Linton, Anal. Chem., 1985, 57, 2314–
2319.
3 H. G. Yu, S. C. Lee, J. G. Yu and C. H. Ao, J. Mol. Catal. A:
Chem., 2006, 246, 206–211.
4 H. Yu, S. C. Lee, C. H. Ao and J. Yu, J. Cryst. Growth, 2005, 280,
612–619.
33 W. E. Slink and P. B. DeGroot, J. Catal., 1981, 68, 423–432.
34 T. Ohsaka, F. Izumi and Y. Fujiki, J. Raman Spectrosc., 1978,
7, 321–324.
35 J. Qi, T. B. Zhao, X. Xu, F. Y. Li and G. D. Sun, J. Porous Mater.,
2011, 18, 509–515.
5 C. H. Ao, S. C. Lee and J. C. Yu, J. Photochem. Photobiol., A,
2003, 156, 171–177.
6 V. Brezova, A. Blazkova, L. Karpinsky, J. Groskova,
B. Havlinova, V. Jorik and M. Ceppan, J. Photochem.
Photobiol., A, 1997, 109, 177–183.
36 M. K. Naskar, D. Kundu and M. Chatterjee, Bull. Mater. Sci.,
2009, 32, 537–541.
7 C.-N. Kuo, H.-F. Chen, J.-N. Lin and B.-Z. Wan, Catal. Today,
2007, 122, 270–276.
37 S. Kundu, A. Kazas, G. Hyett, A. Mills, J. A. Darr and
I. P. Parkin, J. Mater. Chem., 2011, 21, 6854–6863.
38 A. Mills, J. Wang, S.-K. Lee and M. Simonsen, Chem.
Commun., 2005, 2721–2723.
39 A. Mills and J. Wang, J. Photochem. Photobiol., A, 2006, 182,
181–186.
8 W. Liu, L. Zhang, L.-X. Cao, G. Su and Y.-G. Wang, J. Alloys
Compd., 2011, 509, 3419–3424.
9 J. Palau, M. Colomer, J. M. Penya-Roja and V. Martinez-Soria,
Ind. Eng. Chem. Res., 2012, 51, 5986–5994.
10 D. Robert, A. Piscopo, O. Heintz and J. V. Weber, Catal.
Today, 1999, 54, 291–296.
40 H. Hantsche, Adv. Mater., 1993, 5, 778.
11 A. E. Comyns, Appl. Organomet. Chem., 1999, 13, 209–210.
This journal is © The Royal Society of Chemistry 2015
RSC Adv., 2015, 5, 6970–6975 | 6975