Please do not adjust margins
Journal of Materials Chemistry B
Page 8 of 9
ARTICLE
Journal Name
6
7
8
9
A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung and
B. R. Smith and S. S. Gambhir, Chem.DROeIv: .1,0.21003197/,C18T1B70,3918051A-
986.
Z. Zhou, J. Song, L. Nie and X. Chen, Chemical Society
Reviews, 2016, 45, 6597-6626.
B. Kalyanaraman, Redox Biology, 2013, 1, 244-257.
PTT/PDT therapeutic effect of PDBr NPs against tumor.
Meanwhile, the body weight for group III increases gradually
(Fig. 6B and 6C), which indicates the good bio-compatibility
and low side effect of PDBr NPs. These results manifest that
PDBr NPs is
a promising nanotheranostic agent for
photothermal and photodynamic therapy in vivo.
10 A. W. Girotti, Journal of Photochemistry and Photobiology B-
Biology, 2001, 63, 103-113.
11 K. Plaetzer, T. Kiesslich, C. B. Oberdanner and B. Krammer,
Current Pharmaceutical Design, 2005, 11, 1151-1165.
12 M. Lam, N. L. Oleinick and A. L. Nieminen, Journal of
Biological Chemistry, 2001, 276, 47379-47386.
13 S. Lal, S. E. Clare and N. J. Halas, Accounts Chem. Res., 2008,
41, 1842-1851.
14 W. I. Choi, J.-Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim and G.
After in vivo treatment, all mice were sacrificed and the tumor
and main organs were collected to stain with haematoxylin
and eosin (H&E) for histopathological examination, so as to
understand the therapeutic effect at the tissue level. Fig. 6E
recorded the photograph of the tumor histologic section for
group I and group II, while the nuclei of tumor cells are in good
condition. In addition, the H&E stained images of major organs
(heart, liver, spleen, lung, and kidney) disclosed that the nuclei
of the normal cells remained almost unchanged (Fig. S8),
indicating excellent biocompatibility and low side effect of
PDBr NPs to living mice.
Tee, ACS Nano, 2011, 5, 1995-2003.
15 J. Wang, G. Zhu, M. You, E. Song, M. I. Shukoor, K. Zhang, M.
B. Altman, Y. Chen, Z. Zhu and C. Z. Huang, ACS Nano, 2012,
6
, 5070-5077.
16 W.-S. Kuo, Y.-T. Chang, K.-C. Cho, K.-C. Chiu, C.-H. Lien, C.-S.
Yeh and S.-J. Chen, Biomaterials, 2012, 33, 3270-3278.
17 D. Chen, Q. Tang, J. Zou, X. Yang, W. Huang, Q. Zhang, J. Shao
4. Conclusions
In summary, a small molecule NIR photosensitizer PDBr has
been synthesized and serves as an outstanding theranostic
agent for in vivo synergistic photothermal and photodynamic
and X. Dong, Advanced Healthcare Materials, 2018,
1701272.
7,
18 W. Xiao, P. Wang, C. Ou, X. Huang, Y. Tang, M. Wu, W. Si, J.
Shao, W. Huang and X. Dong, Biomaterials, 2018, 183, 1-9.
19 T. Yang, Y. a. Tang, L. Liu, X. Lv, Q. Wang, H. Ke, Y. Deng, H.
Yang, X. Yang and G. Liu, ACS Nano, 2017, 11, 1848-1857.
20 M. Li, X. Yang, J. Ren, K. Qu and X. Qu, Advanced Materials,
2012, 24, 1722-1728.
21 L. Jing, X. Liang, Z. Deng, S. Feng, X. Li, M. Huang, C. Li and Z.
Dai, Biomaterials, 2014, 35, 5814-5821.
22 W. Wang, L. Wang, Z. Li and Z. Xie, Chemical
Communications, 2016, 52, 5402-5405.
23 A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S.
Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma and O. Oralkan,
Nature Nanotechnology, 2008,
24 Q. Jia, J. Ge, W. Liu, S. Liu, G. Niu, L. Guo, H. Zhang and P.
Wang, Nanoscale, 2016, , 13067-13077.
25 D. Zhang, M. Wu, Y. Zeng, N. Liao, Z. Cai, G. Liu, X. Liu and J.
Liu, Journal of Materials Chemistry B, 2016, , 589-599.
therapy. PDBr
, with high stability and biocompatibility,
presents a high singlet oxygen quantum yield of 67%. And
PDBr NPs demonstrate a high photothermal conversion
efficiency of 35.7% and fluorescence imaging property without
noticeable in vivo toxicity. Due to the combined merits, PDBr
NPs can significantly inhibit the tumor growth in living mice
through imaging-guided photothermal and photodynamic
therapy. Therefore, PDBr NPs is a promising multi-functional
organic nanoparticle for clinical application.
3, 557.
8
Conflicts of interest
The authors declare no conflict of interest.
4
26 R. J. Paproski, A. Forbrich, E. Huynh, J. Chen, J. D. Lewis, G.
Zheng and R. J. Zemp, Small, 2016, 12, 371-380.
27 A. Jana, K. S. P. Devi, T. K. Maiti and N. P. Singh, Journal of
the American Chemical Society, 2012, 134, 7656-7659.
28 Y. Cai, W. Si, W. Huang, P. Chen, J. Shao and X. Dong, Small,
2018, 1704247.
Acknowledgements
The work was supported by the NNSF of China (61604071,
61525402, 61775095, 61520106015), Jiangsu Provincial key
research and development plan (BE2017741), Natural Science
Foundation of Jiangsu Province (BK20161012), and Six talent
peak innovation team in Jiangsu Province (TD-SWYY-009).
29 G. Liu, J. Zou, Q. Tang, X. Yang, Y. Zhang, Q. Zhang, W. Huang,
P. Chen, J. Shao and X. Dong, ACS Applied Materials &
Interfaces, 2017, 9, 40077-40086.
30 H. S. Jung, J.-H. Lee, K. Kim, S. Koo, P. Verwilst, J. L. Sessler, C.
Kang and J. S. Kim, Journal of the American Chemical Society,
2017, 139, 9972-9978.
31 Y. Li, T. Wen, R. Zhao, X. Liu, T. Ji, H. Wang, X. Shi, J. Shi, J.
Wei, Y. Zhao, X. Wu and G. Nie, ACS Nano, 2014, 8, 11529-
Notes and references
11542.
32 M. Kaur and D. H. Choi, Chemical Society Reviews, 2015, 44
,
1
2
3
4
5
D. Ding, K. Li, B. Liu and B. Z. Tang, Accounts Chem. Res.,
2013, 46, 2441-2453.
P. Carmeliet and R. K. Jain, Nature Reviews Drug Discovery,
2011, 10, 417-427.
D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit and
R. Langer, Nature Nanotechnology, 2007, 2, 751.
L. Cheng, C. Wang, L. Feng, K. Yang and Z. Liu, Chem. Rev.,
2014, 114, 10869-10939.
W. Fan, P. Huang and X. Chen, Chemical Society Reviews,
2016, 45, 6488-6519.
58-77.
33 Y. Li, P. Sonar, L. Murphy and W. Hong, Energy
&
Environmental Science, 2013, 6, 1684-1710.
34 K. Pu, J. Mei, J. V. Jokerst, G. Hong, A. L. Antaris, N.
Chattopadhyay, A. J. Shuhendler, T. Kurosawa, Y. Zhou, S. S.
Gambhir, Z. Bao and J. Rao, Advanced Materials, 2015, 27
,
5184-5190.
35 Y. Cai, W. Si, Q. Tang, P. Liang, C. Zhang, P. Chen, Q. Zhang,
W. Huang and X. Dong, Nano Research, 2017, 10, 794-801.
8 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins