H2O2 because it is a lot less reactive toward TCP than Catꢀ, and
its concentration is never as high as in the HSO5 system.
16 G. Lente and J. H. Espenson, Green Chem., 2005, 7, 28–34.
−
17 T. G. Traylor and F. Xu, J. Am. Chem. Soc., 1987, 109, 6201–6202.
18 T. C. Bruice, P. N. Balasubramanian, R. W. Lee and J. R. L. Smith,
J. Am. Chem. Soc., 1988, 110, 7890–7892.
19 G. Labat, J. L. Se´ris and B. Meunier, Angew. Chem., Int. Ed. Engl.,
1990, 29, 1471–1473.
Conclusion
20 W. Nam, M. H. Lim, H. J. Lee and C. Kim, J. Am. Chem. Soc., 2000,
122, 6641–6647.
21 V. Lepentsiotis, R. van Eldik, F. F. Prinsloo and J. J. Pienaar, J. Chem.
Soc., Dalton Trans., 1999, 2759–2767.
22 T. K. Saha, S. Karmaker and K. Tamagake, Luminescence, 2003, 18,
259–267.
23 N. A. Stephenson and A. T. Bell, Inorg. Chem., 2007, 46, 2278–2285.
24 E. B. Fleischer, J. M. Palmer, T. S. Srivastava and A. Chatterjee, J. Am.
Chem. Soc., 1971, 93, 3162–3167.
25 A. A. El-Awady, P. C. Wilkins and R. G. Wilkins, Inorg. Chem., 1985,
24, 2053–2057.
26 J. T. Groves and Y. Watanabe, J. Am. Chem. Soc., 1988, 110, 8443–8452.
27 J. T. Groves, Z. Gross and M. K. Stern, Inorg. Chem., 1994, 33, 5065–
5072.
28 G. Gordon and P. Tewari, J. Phys. Chem., 1966, 60, 200–204.
29 B. Tonomura, H. Nakatani, M. Ohnishi, J. Yamaguchi-Ito and K.
Hiromi, Anal. Biochem., 1978, 84, 370–383.
This study shows that studying the kinetics of the reaction between
an oxidant and a catalyst without any oxidizable substrate is
very important even when the primary objective is to explore the
catalytic oxidation reaction. In the FeIIITPPS–H2O2–chlorophenol
system, the most active form of the catalyst is clearly not the same
as the first spectroscopically detectable intermediate of the reaction
in the absence of chlorophenol, which gives the general warning
that isolated and spectroscopically or structurally characterized
intermediates of a reaction may in fact have little relevance in
catalytic cycles. Reactive species should not be identified solely
based on spectral or structural studies, kinetic data are also
essential.
30 G. Peintler, A. Nagy, A. K. Horva´th, T. Ko¨rtve´lyesi and I. Nagypa´l,
Phys. Chem. Chem. Phys., 2000, 2, 2575–2586.
31 H. M. Irving, M. G. Miles and L. D. Pettitt, Anal. Chim. Acta, 1967,
38, 475–488.
Acknowledgements
The authors thank the Hungarian Science Foundation for finan-
cial support under grant No. F049498. Dr Ja´nos To¨ro¨k and
Mr Lajos Nagy are gratefully acknowledged for assistance in
the ESI-MS measurements. GL wishes to thank the Hungarian
Academy of Sciences for a Bolyai Ja´nos Research Fellowship.
32 SCIENTIST, version 2.0, Micromath Software, Salt Lake City, UT,
USA, 1995.
33 G. Peintler, ZiTa, version 4.1, Attila Jo´zsef University, Szeged, Hungary,
1997.
34 MatLab for Windows, version 4.2c1, The Mathworks, Inc., Natick, MA,
USA, 1994.
35 J. H. Espenson, in Chemical Kinetics and Reaction Mechanisms,
McGraw-Hill, New York, 2nd edn, 1995.
References
36 I. Kerezsi, G. Lente and I. Fa´bia´n, J. Am. Chem. Soc., 2005, 127, 4785–
1 A. Sorokin, J. L. Se´ris and B. Meunier, Science, 1995, 268, 1163–1166.
2 T. J. Collins, Science, 2001, 291, 48–49.
4793.
37 I. Kerezsi, G. Lente and I. Fa´bia´n, Dalton Trans., 2006, 955–960.
38 D. M. Stanbury and J. N. Figlar, Coord. Chem. Rev., 1999, 187, 223–
232.
3 T. J. Collins, Acc. Chem. Res., 2002, 35, 782–790.
4 S. Sen Gupta, M. Stadler, C. A. Noser, A. Ghosh, B. Steinhoff, D.
Lenoir, C. P. Horwitz, K.-W. Schramm and T. J. Collins, Science, 2002,
296, 326–328.
39 M. Galajda, G. Lente and I. Fa´bia´n, J. Am. Chem. Soc., 2007, 129,
7738–7739.
5 J. A. Kovacs, Science, 2003, 299, 1024–1025.
40 I. Hamachi, S. Tsukiji, S. Shinkai and S. Oishi, J. Am. Chem. Soc., 1999,
121, 5500–5506.
6 J. U. Rohde, J. H. In, M. H. Lim, W. W. Brennessel, M. R. Bukowski,
A. Stubna, E. Mu¨nck, W. Nam and L. Que, Jr., Science, 2003, 299,
1037–1039.
41 J. Premkumar and R. Ramaraj, J. Mol. Catal. A: Chem., 1999, 142,
153–162.
7 J. T. Groves, J. Inorg. Biochem., 2006, 100, 434–447.
8 T. M. Makris, K. von Koenig, I. Schlichting and S. G. Sligar, J. Inorg.
Biochem., 2006, 100, 507–518.
9 F. T. de Oliveira, A. Chanda, D. Banerjee, X. P. Shan, S. Mondal, L.
Que, Jr., E. Bominaar, E. Mu¨nck and T. J. Collins, Science, 2007, 315,
835–838.
10 B. J. Brazeau, R. N. Austin, C. Tarr, J. T. Groves and J. D. Lipscomb,
J. Am. Chem. Soc., 2001, 123, 11831–11837.
11 L. G. Beauvais and S. J. Lippard, J. Am. Chem. Soc., 2005, 127, 7370–
7378.
12 G. Lente and J. H. Espenson, Chem. Commun., 2003, 1162–1163.
13 G. Lente and J. H. Espenson, J. Photochem. Photobiol., A, 2004, 163,
249–258.
14 G. Lente and J. H. Espenson, Int. J. Chem. Kinet., 2004, 36, 449–455.
15 G. Lente and J. H. Espenson, New J. Chem., 2004, 28, 847–852.
42 M. Weitzer, M. Schatz, F. Hampel, F. W. Heinemann and S. Schindler,
J. Chem. Soc., Dalton Trans., 2002, 686–694.
43 L. Stryer, in Biochemistry, W. H. Freeman & Co., New York, 4th edn,
1995.
44 E. L. Wehry and L. B. Rogers, J. Am. Chem. Soc., 1966, 88, 351–354.
45 J. Terner, V. Palaniappan, A. Gold, R. Weiss, M. M. Fitzgerald, A. M.
Sullivan and C. M. Hosten, J. Inorg. Biochem., 2006, 100, 480–501.
46 Z. Z. Pan, R. Zhang and M. Newcomb, J. Inorg. Biochem., 2006, 100,
524–532.
47 D. Kumar, S. P. de Visser and S. Shaik, J. Am. Chem. Soc., 2005, 127,
8204–8213.
48 T. Kamachi and K. Yoshizawa, J. Am. Chem. Soc., 2005, 127, 10686–
10692.
49 G. Lente and I. Fa´bia´n, J. Chem. Soc., Dalton Trans., 2002, 778–784.
This journal is
The Royal Society of Chemistry 2007
Dalton Trans., 2007, 4268–4275 | 4275
©