Communication
ChemComm
Conflicts of interest
There are no conflicts to declare.
References
1 G. Guichard and I. Huc, Chem. Commun., 2011, 47, 5933–5941.
2 D. J. Hill, M. J. Mio, R. B. Prince, T. S. Hughes and J. S. Moore,
Chem. Rev., 2001, 101, 3893–4012.
3 P. D. S. Hecht and D. I. Huc, Foldamers: Structure, Properties, and
Applications, Wiley-VCH, 2007, pp. 291–329, DOI: 10.1002/
9783527611478.ch10.
4 V. Berl, I. Huc, R. G. Khoury, M. J. Krische and J.-M. Lehn, Nature,
2000, 407, 720–723.
Fig. 6 (A) Molecular modeling of 12, (B) modeling of four turns of the tube
with 16 units by turn and an B10 nm diameter.
5 P. D. S. Hecht and D. I. Huc, Foldamers: Structures, properties, applica-
tions, Wiley-VCH, 2007, pp. 1–435, DOI: 10.1002/9783527611478.ch1.
allowing the elongation of the fiber adding several units
stabilized by the CT interaction and to the energy allowing
the lateral interaction of the twisted fiber to close the tube
(Fig. S20, ESI†).
In conclusion, we provide an easy method for the synthesis
of new donor–acceptor amphiphilic phosphodiester foldamers,
fully soluble in water, without any cosolvent, stabilized by a
variety of interactions, i.e., electronic complementary, charge
transfer and solvophobic effects. Starting from DAN and NDI
¨
6 M. Vybornyi, Y. Vyborna and R. Haner, Chem. Soc. Rev., 2019, 48,
4347–4360.
¨
7 R. Haner, F. Samain and V. L. Malinovskii, Chem. – Eur. J., 2009, 15,
5701–5708.
¨
8 R. Haner, F. Garo, D. Wenger and V. L. Malinovskii, J. Am. Chem.
Soc., 2010, 132, 7466–7471.
9 M. Vybornyi, A. V. Rudnev, S. M. Langenegger, T. Wandlowski,
¨
G. Calzaferri and R. Haner, Angew. Chem., Int. Ed., 2013, 52,
11488–11493.
¨
10 Y. Vyborna, M. Vybornyi, A. V. Rudnev and R. Haner, Angew. Chem.,
Int. Ed., 2015, 54, 7934–7938.
phosphoramidites as building blocks, we successfully synthe- 11 M. Vybornyi, Y. Bur-Cecilio Hechevarria, M. Glauser, A. V. Rudnev
¨
and R. Haner, Chem. Commun., 2015, 51, 16191–16193.
sized a (DAN–NDI)3 hexamer and demonstrated its folding by
UV-visible and fluorescence studies. AFM and TEM character-
¨
12 M. Vybornyi, A. Rudnev and R. Haner, Chem. Mater., 2015, 27,
1426–1431.
izations allowed us to visualize the formation of regular nano- 13 Y. Vyborna, M. Vybornyi and R. Haner, Chem. Commun., 2017, 53,
5179–5181.
tubes that are several hundreds of nanometers in length and
¨
14 H. Yu and R. Haner, Chem. Commun., 2016, 52, 14396–14399.
15 C. D. Bosch, S. M. Langenegger and R. Haner, Angew. Chem., Int. Ed.,
2016, 55, 9961–9964.
16 C. B. Winiger, S. M. Langenegger, O. Khorev and R. Haner, Beilstein
J. Org. Chem., 2014, 10, 1589–1595.
B10 nm in diameter resulting from a supramolecular arrange-
ment of several hexamers stabilized by longitudinal and lateral
interactions. In contrast to Iverson and co-workers who
observed an amyloid-like behavior for the alternated DAN and
17 R. Scott Lokey and B. L. Iverson, Nature, 1995, 375, 303.
NDI foldamers linked with amino acids when heated,20 we 18 A. J. Zych and B. L. Iverson, J. Am. Chem. Soc., 2000, 122, 8898–8909.
19 B. A. Ikkanda and B. L. Iverson, Chem. Commun., 2016, 52, 7752–7759.
20 C. Peebles, R. Piland and B. L. Iverson, Chem. – Eur. J., 2013, 19,
demonstrated that alternated DAN and NDI foldamers linked
by phosphodiesters are stable even at high temperature and are
11598–11602.
able to form nanotubes, thanks to strong CT stabilization in 21 M. S. Cubberley and B. L. Iverson, J. Am. Chem. Soc., 2001, 123,
7560–7563.
water. However, the nanotubes can be destroyed by heating to
80 1C. In addition, the structuring of these original foldamers
22 M. W. Hanna and A. L. Ashbaugh, J. Phys. Chem., 1964, 68, 811–816.
23 D. A. Deranleau, J. Am. Chem. Soc., 1969, 91, 4050–4054.
triggered by charge-transfer interactions complements a range 24 A. Das and S. Ghosh, Angew. Chem., Int. Ed., 2014, 53, 2038–2054.
25 M. Kumar, K. Venkata Rao and S. J. George, Phys. Chem. Chem. Phys.,
of bio-inspired architectures based on p-stacking interaction
2014, 16, 1300–1313.
26 S. Ghosh and S. Ramakrishnan, Angew. Chem., Int. Ed., 2004, 43,
3264–3268.
27 S. L. Beaucage and M. H. Caruthers, Tetrahedron Lett., 1981, 22,
1859–1862.
28 N. Rahe, C. Rinn and T. Carell, Chem. Commun., 2003, 2120–2121.
29 P. Talukdar, G. Bollot, J. Mareda, N. Sakai and S. Matile, J. Am. Chem.
Soc., 2005, 127, 6528–6529.
7–13
reported by Haner with polypyrene,
polyanthracene14 or
¨
polyphenanthrene.15 Furthermore, our current foldamers are
fully soluble in water without the addition of any organic
solvent which makes them compatible in aqueous media under
physiological conditions.
Current water-soluble DNA-inspired foldamers open the way
to new objects that could be decorated with motifs recognized
´
30 R. Kaminski, J. Kowalski, I. Mames, B. Korybut-Daszkiewicz,
S. Domagała and K. Wo´zniak, Eur. J. Inorg. Chem., 2011, 479–488.
by living systems to develop biologically active synthetic mole- 31 V. J. Bradford and B. L. Iverson, J. Am. Chem. Soc., 2008, 130,
1517–1524.
cules or new hybrid materials.
32 P. R. Ashton, R. Ballardini, V. Balzani, S. E. Boyd, A. Credi,
K. P. C. thanks the Univ. of Montpellier (UM) for the award
M. T. Gandolfi, M. Gomez-Lopez, S. Iqbal, D. Philp, J. A. Preece,
of a research studentship. F. M. is a member of Inserm. We
thank Dr F. Menges (Univ. of Konstanz) for the use of Spectra-
Gryph software. We also thank the Centrale de Technologie en
L. Prodi, H. G. Ricketts, J. F. Stoddart, M. S. Tolley, M. Venturi,
A. J. P. White and D. J. Williams, Chem. – Eur. J., 1997, 3, 152–170.
33 B. Abraham, S. McMasters, M. A. Mullan and L. A. Kelly, J. Am.
Chem. Soc., 2004, 126, 4293–4300.
´
Micro et nanoelectronique of the UM for AFM analyses.
34 M. L. Watson, J. Biophys. Biochem. Cytol., 1958, 4, 475–478.
This journal is © The Royal Society of Chemistry 2021
Chem. Commun., 2021, 57, 4130–4133 | 4133