Journal of the American Chemical Society
Page 4 of 6
the rate of CO reduction at a surface site by increasing its steady-
ACKNOWLEDGMENT
1
2
3
4
5
6
7
8
state CO coverage. In addition, a high density of strong binding
sites at a surface region created by a bulk defect may be necessary
if the rate-limiting step involves reductive CO coupling.25,26 How-
ever, these strong-binding sites may not be sufficient for CO re-
duction. The OD-Cu–500 electrode annealed at 350 °C retains
1.5% of the strong binding site despite having jCORedn that is 4-fold
lower than that of polycrystalline Cu foil, which has only terrace
and step sites (Figure S8, Table S4). The broad high-temperature
feature observed in TPD does not reflect a single surface atomic
structure; rather it most likely consists of a range of strained or
defective structures, all of which bind CO more strongly within a
~10 kJ/mol range. As such, it is possible that only a small subset
of these defective structures is capable of catalyzing the CO re-
duction reaction. In addition, CO is simply a probe molecule in
these experiments. In electrolyte solution with an applied poten-
tial, the relevant catalytic transition state structures and binding
energies may not scale with the CO binding energy in UHV.
The Danish National Research Foundation’s Center for Individual
Nanoparticle Functionality is supported by the Danish National
Research Foundation (DNRF54). We thank the Global Climate
and Energy Project (106765) and the AFOSR (FA9550-14-1-
0132). C.W.L. gratefully acknowledges a Stanford Graduate Fel-
lowship. Sample characterization was performed at the Stanford
Nano Shared Facilities. Lawrence Livermore National Laboratory
is under the auspices of the U.S. Department of Energy, Contract
No. DE-AC52-07NA27344. J. T. M. and M. K. were supported by
the Office of Basic Energy Sciences, Division of Materials Sci-
ence and Engineering under FWP #SCW0939.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1) Hori, Y. In Modern Aspects of Electrochemistry; Vayenas, C. G.,
White, R. E., Gamboa-Aldeco, M. E., Ed.; Sringer: New York, 2008; Vol.
42, p 89.
(2) Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D.
L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A.; Kerfeld,
C. A.; Morris, R. H.; Peden, C. H. F.; Portis, A. R.; Ragsdale, S. W.;
Rauchfuss, T. B.; Reek, J. N. H.; Seefeldt, L. C.; Thauer, R. K.; Waldrop,
G. L. Chem Rev 2013, 113, 6621.
(3) Chen, Y. H.; Li, C. W.; Kanan, M. W. J Am Chem Soc 2012, 134,
19969.
(4) DiMeglio, J. L.; Rosenthal, J. J Am Chem Soc 2013, 135, 8798.
(5) Zhu, W. L.; Michalsky, R.; Metin, O.; Lv, H. F.; Guo, S. J.; Wright, C.
J.; Sun, X. L.; Peterson, A. A.; Sun, S. H. J Am Chem Soc 2013, 135,
16833.
(6) Mistry, H.; Reske, R.; Zeng, Z. H.; Zhao, Z. J.; Greeley, J.; Strasser,
P.; Cuenya, B. R. J Am Chem Soc 2014, 136, 16473.
(7) Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J.
G. G.; Jiao, F. Nat Commun 2014, 5.
(8) Asadi, M.; Kumar, B.; Behranginia, A.; Rosen, B. A.; Baskin, A.;
Repnin, N.; Pisasale, D.; Phillips, P.; Zhu, W.; Haasch, R.; Klie, R. F.;
Kral, P.; Abiade, J.; Salehi-Khojin, A. Nat Commun 2014, 5, 4470.
(9) Hori, Y.; Takahashi, R.; Yoshinami, Y.; Murata, A. J Phys Chem B
1997, 101, 7075.
Grain boundaries are bulk phenomena, but they can affect the
surface of the sample probed in TPD experiments. The reduction
in the proportion of strong binding sites upon thermal annealing
qualitatively correlates to the microstructural change observed in
TEM. The 7-fold drop in strong binding sites percentage is similar
to the 9-fold drop in grain boundary density observed between
OD-Cu-500 and the electrode after 350 °C annealing. Notably, the
proportion of strong binding sites estimated by microkinetic mod-
eling of the TPD profiles is significantly larger than the propor-
tion of the surface corresponding to grain boundary surface termi-
nations. Based on the grain boundary orientation maps and assum-
ing a 1 nm boundary width, we estimate that OD-Cu-500 has 1-
2% coverage of grain boundary surface termination area while the
TPD modeling indicates 7–15% coverage of strong binding sites.
If the grain boundaries are responsible for creating all of the
strong binding sites, these results indicate that the surface termi-
nations affect the structure and binding properties of a region that
encompasses a much larger width of 4–10 nm. Previous simula-
tions of nanocrystalline fcc metals have shown that grain bounda-
ries strain the surfaces up to several nm away 27. Annealing of the
samples up to a certain temperature would leave grain boundaries
unaffected, but relax out metastable strong binding sites.
(10) Schouten, K. J. P.; Qin, Z. S.; Gallent, E. P.; Koper, M. T. M. J Am
Chem Soc 2012, 134, 9864.
(11) Li, C. W.; Ciston, J.; Kanan, M. W. Nature 2014, 508, 504.
(12) Fu, S. S.; Somorjai, G. A. Surf Sci 1992, 262, 68.
(13) Sandoval, M. J.; Bell, A. T. J Catal 1993, 144, 227.
(14) Perez-Alonso, F. J.; McCarthy, D. N.; Nierhoff, A.; Hernandez-
Fernandez, P.; Strebel, C.; Stephens, I. E. L.; Nielsen, J. H.; Chorkendorff,
I. Angew Chem Int Edit 2012, 51, 4641.
(15) van der Niet, M. J. T. C.; den Dunnen, A.; Juurlink, L. B. F.; Koper,
M. T. M. Angew Chem Int Edit 2010, 49, 6572.
(16) Johansson, T. P.; Ulrikkeholm, E. T.; Hernandez-Fernandez, P.;
Escudero-Escribano, M.; Malacrida, P.; Stephens, I. E. L.; Chorkendorff,
I. Phys Chem Chem Phys 2014, 16, 13718.
(17) LaGrange, T.; Reed, B. W.; Wall, M.; Mason, J.; Barbee, T.; Kumar,
M. Appl Phys Lett 2013, 102.
(18) Rauch, E. F.; Veron, M.; Portillo, J.; Bultreys, D.; Maniette, Y.;
Nicolopoulos, S.; 2008, S5. Microscopy and Analysis 2008, 22, S5.
(19) In IUPAC Solubility Data Series; Cargill, R. W., Ed.; Pergamon
Press: Oxford, 1990; Vol. 43.
(20) Nerlov, J.; Sckerl, S.; Wambach, J.; Chorkendorff, I. Appl Catal A-
Gen 2000, 191, 97.
(21) Vollmer, S.; Witte, G.; Woll, C. Catal Lett 2001, 77, 97.
(22) Makino, T.; Okada, M. Surf Sci 2014, 628, 36.
(23) Strunk, J.; d'Alnoncourt, R. N.; Bergmann, M.; Litvinov, S.; Xia, X.;
Hinrichsen, O.; Muhler, M. Phys Chem Chem Phys 2006, 8, 1556.
(24) d'Alnoncourt, R. N.; Bergmann, M.; Strunk, J.; Loffler, E.; Hinrich-
sen, O.; Muhler, M. Thermochim Acta 2005, 434, 132.
(25) Montoya, J. H.; Shi, C.; Chan, K.; Nørskov, J. K. J. Phys. Chem. Lett.
2015, 6, 2032.
(26) Calle-Vallejo, F.; Koper, M. T. M. Angew Chem Int Ed 2013, 52,
7282.
(27) Stukowski, A.; Markmann, J.; Weissmuller, J.; Albe, K. Acta Mater
2009, 57, 1648.
In summary, we present evidence that the high CO reduction
activity on OD-Cu is correlated to surface sites that bind CO more
strongly than low-index and stepped Cu facets. These metastable
sites may arise from the disordered surfaces at grain boundary and
defect terminations, which are stabilized by the interconnected
nanocrystalline network. Further structural and mechanistic eluci-
dation of the surface chemistry of OD-Cu, in particular regarding
the exact nature of the active site, will enable the design and syn-
thesis of more efficient catalytic materials for CO reduction.
ASSOCIATED CONTENT
Supporting Information
Experimental procedures and additional data. This material is
AUTHOR INFORMATION
Corresponding Authors
*mkanan@stanford.edu, ibchork@fysik.dtu.dk
Author Contributions
‡These authors contributed equally to this work.
ACS Paragon Plus Environment