Cyanation of Aldehydes Catalyzed by a Ti Complex
cyanide, diethyl cyanophosphonate, or benzoyl cyanide as the
cyanide source to afford corresponding functionalized cyano-
TABLE 1. Asymmetric Cyanation of Benzaldehyde Catalyzed by
the Combination of Mono-Ligand and Ti(IV)
4
5
hydrins have been reported by Deng, Shibasaki, Sansano,
6
7
8
N a´ jera and Sa a´ , Belokon and North, and Moberg. Among
these precedents, a number of bifunctional chiral catalysts that
are based on BINOL and natural glucose have been successfully
applied in many asymmetric reactions.3
f,g,6,9
Triggered by the
bifunctional catalysts’ methods, we wish to explore whether the
combination of BINOL derivatives 1 with chiral amine 2 and 3
would improve enantioselectivity and reactivity. We assume that
the metallic reagent (titanium) would work as a Lewis acid to
activate the substrates (carbonyl group), meanwhile the nitrogen
entrya
ligand
time (h)
yield (%)b
ee (%)c,d
1
2
3
4
5
6
7
8
9
1a
1b
1c
1d
1e
1f
1g
2a
2b
2c
2d
3a
3b
3c
96
96
96
96
96
48
40
24
24
24
24
24
24
24
0
0
0
0
0
85
87
99
99
99
99
99
99
99
atom of the amine would work as a Lewis base to activate the
nucleophile (EtOCOCN).4
,5,9f
We report herein an efficient
14(R)
27(R)
11(R)
10(R)
9(S)
10(S)
4(R)
8(R)
multicomponent bifunctional catalyst (the combination of 1e,
a, 3b, and Ti(IV)) for the cyanation of aldehydes with ethyl
2
cyanoformate, and each component of the catalyst is com-
mercially available or easily prepared.
10
11
12
13
14
Results and Discussion
3(R)
Initially, we wish to promote the reaction of benzaldehyde
a
Conditions: 1igand/Ti(IV) ) 1/1, concentration of benzaldehyde: 0.25
with ethyl cyanoformate (EtOCOCN) in dichloromethane at -20
M, EtOCOCN: 1.2 equiv, -20 °C. Isolated yield. c Determined by HPLC
on a Chiralcel OD column. d The absolute configuration of the major product
was determined by comparison with the reported value of optical rotation
(ref 5a).
b
°
C in the presence of 10 mol % mono-ligand with Ti(IV)
complexes (Table 1). The data indicated that the BINOL
derivatives 1f,g, chiral amine 2 and 3 complexes with Ti(IV)
were able to catalyze the reaction in excellent yields (Table 1,
entries 6-14) except for BINOL derivatives 1a-e (Table 1,
entries 1-5, no reactions were observed); however, the highest
enantioselectivity was only 27% (Table 1, entry 7). Herein, we
assumed that the nitrogen atoms of these ligands (chiral amine
TABLE 2. Asymmetric Cyanation of Benzaldehyde Catalyzed by
the Combination of Double-Ligand and Ti(IV)
entrya
yield (%)b
ee (%)c,d
combined ligands
1
2
3
4
5
6
7
8
9
1a
1b
1c
1d
1e
1e
1e
1f
1g
1h
1e
1e
1e
1e
1e
1e
2a
2a
2a
2a
2a
2a
2a
2a
2a
2a
2b
2c
2d
3a
3b
3c
99
99
95
99
99
60
48
99
99
99
93
94
95
90
80
90
42(R)
13(R)
12(R)
46(R)
69(R)
2
and 3, BINOL derivatives 1f,g) might act as a Lewis base to
activate the EtOCOCN in the reaction (Table 1, entries
4,6,8,9
6
-14).
On the basis of bifunctional conception,6,8,9 we expected that
e
59(R)
bifunctional catalysts could be realized by the complexes of
BINOL derivative 1 with a metallic reagent as Lewis acid
52(R)f
13(R)
26(R)
31(S)
68(R)
40(S)
20(R)
20(R)
37(R)
12(R)
10
11
12
13
14
15
16
(
(
4) Tian, S.-K.; Deng, L. J. Am. Chem. Soc. 2001, 123, 6195-6196.
5) (a) Yamagiwa, N.; Tian, J.; Matsunaga, S.; Shibasaki, M. J. Am.
Chem. Soc. 2005, 127, 3413-3422. (b) Tian, J.; Yamagiwa, N.; Matsunaga,
S.; Shibasaki, M. Org. Lett. 2003, 5, 3021-3024. (c) Tian, J.; Yamagiwa,
N.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2002, 41, 3636-
3
638.
(6) (a) Baeza, A.; Casas, J.; N a´ jera, C.; Sansano, J.; Sa a´ , J. M. Eur. J.
Org. Chem. 2006, 1949-1958. (b) Baeza, A.; N a´ jera, C.; Sansano, J. M.;
Sa a´ , J. M. Tetrahedron: Asymmetry 2005, 16, 2385-2389. (c) Casas, J.;
Baeza, A.; Sansano, J. M.; N a´ jera, C.; Sa a´ , J. M. Tetrahedron: Asymmetry
a
Conditions: 10 mol % of catalyst (1/Ti(IV)/2 or 3 ) 1/1/1), concentra-
tion of benzaldehyde: 0.25 M in CH2Cl2, -20 °C, 48 h, EtOCOCN: 1.2
equiv. Isolated yield. c Determined by HPLC on a Chiralcel OD column.
b
2
003, 14, 197-200. (d) Baeza, A.; Casas, J.; N a´ jera, C.; Sansano, J.; Sa a´ ,
J. M. Angew. Chem., Int. Ed. 2003, 42, 3143-3146.
7) (a) Belokon’, Y. N.; Blacker, A. J.; Clutterbuck, L. A.; Michael, N.
d
The absolute configuration of the major product was determined by
comparison with the reported value of optical rotation (ref 5a). Add 2a to
the complex of 1e with Ti(IV), 168 h. At -45 °C, for 96 h.
e
(
f
Tetrahedron 2004, 60, 10433-10447. (b) Belokon’, Y. N.; Blacker, A. J.;
Clutterbuck, L. A.; Michael, N. Org. Lett. 2003, 5, 4505-4508.
(8) Lundgren, S.; Wingstrand, E.; Penhoat, M.; Moberg, C. J. Am. Chem.
moieties to activate the carbonyl group, while chiral amine 2
or 3 acts as Lewis base moieties to activate EtOCOCN
simultaneously through a combination approach. Then, some
combinations of BINOL derivatives 1 with chiral amine 2 or 3
were investigated (Table 2, entries 1-16).
The data indicated that the combination of 1e (6,6′-Br2-
BINOL), 2a, and Ti(IV) was the best one (Table 2, entry 5).
Other combinations could catalyze the reaction in excellent
yields with 12-68% ee (Table 2, entries 1-4, 8-16). Moreover,
the absolute configuration of BINOL, its derivatives, and chiral
tertiary amines could affect the face selectivity of the reactions.
When fixing tertiary amine 2a, BINOL derivatives 1e (S) and
1h (R) led to Si face and Re face attack, respectively (Table 2,
Soc. 2005, 127, 11592-11593.
(9) (a) Ichikawa, E.; Suzuki, M.; Yabu, K.; Albert, M.; Kanai, M.;
Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 11808-11809. (b) Masumoto,
S.; Usuda, H.; Suzuki, M.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc.
2
003, 125, 5634-5635. (c) Takamura, M; Fuunabashi, K.; Kanai, M.;
Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 6801-6808. (d) Hamashima,
Y.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2000, 122, 7412-7413.
(e) Takamura, M. Y.; Hamashima, Y.; Usuda, H.; Kanai, M.; Shibasaki,
M. Angew. Chem., Int. Ed. 2000, 39, 1650-1652. (f) Hamashima, Y.;
Sawada, D.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 1999, 121, 2641-
2
642. (g) Hamashima, Y.; Sawada, D.; Nogami, M.; Kanai, M.; Shibasaki,
M. Tetrahedron 2001, 57, 805-814. (h) Qin, Y. C.; Pu, L. Angew. Chem.,
Int. Ed. 2006, 118, 279-283. (i) Kato, N.; Tomita, D.; Maki, K.; Kanai,
M.; Shibasaki, M. J. Org. Chem. 2004, 69, 6128-6130. (j) Casas, J.; Baeza,
A.; Sansano, J. M.; N a´ jera, C.; Sa a´ , J. M. Org. Lett. 2002, 4, 2589-2592.
(k) Gr o¨ ger, H. Chem.sEur. J. 2001, 7, 5246-5251.
J. Org. Chem, Vol. 71, No. 15, 2006 5733