Internally Coordinated R-Amidoboronic Acids
approved recently by the FDA as a proteasome inhibitor and it
represents the only new treatment option for multiple myeloma
1
4
that has become available in more than a decade. The
inhibitory mechanism of boronic acid dipeptides utilizes the
empty 2p orbital centered on the boron atom. This orbital is
believed to interact with the catalytic serine to form a stable
1
5,16
“
ate” complex,
which mimics the transition state for amide
However, dipeptides derived from proline
1
7-21
hydrolysis.
boronic acid such as AlaboroPro and ProboroPro are known to
lose their inhibitory activity in aqueous solution at neutral pH.
This loss of activity has been shown to be due to the reversible
formation of an intramolecular six-membered cyclic species
FIGURE 1. Compounds synthesized in this investigation.
bonds has been correlated to some unexpected physiological
(
:N-C-C-N-C-B), analogous to a diketopiperazine, in
3
1-34
behavior.
2
2,23
which an amine nitrogen atom coordinates to the boron.
In this article we study intramolecular B-O dative bond
formation in some simple R-amidoboronic acids; such acids are
Recently, we found that L-Xaa-boroSar dipeptides represent a
new class of DPP IV inhibitors with IC50 values in the
submicromolar range.24 Although the biological activity of these
dipeptides is typically an order of magnitude lower than that
for the analogous boroPro compounds, their tendency for
intramolecular, pH-dependent cyclization is also lower, by 1 to
4
also known to be inhibitors of serine proteases. In particular,
we describe the synthesis of six new N-acyl-boroGly derivatives
and their N-acyl-boroSar analogues, see Figure 1.
In basic aqueous media, the boron atom in these R-amido-
boronic acids is expected to be tetracoordinated, as a result of
24
3
orders of magnitude (except for Xaa ) Gly, Pro). A plausible
3
5-38
borate ion formation,
and this is indeed observed (vide
explanation for the reduced cyclization rate of these boroSar
inhibitors is the formation of an intramolecular five-membered
infra). In acidic media, the boron atom in each of these
compounds has the potential to be tetracoordinated via the
formation of an intramolecular B-O dative bond in the context
of a five-membered (:OdC-N-C-B) ring motif. 11B and H
NMR spectroscopy, in conjunction with computational meth-
odology, are used to investigate the extent to which the carbonyl
oxygen atom in these R-amidoboronic acids coordinates to the
boron. We specifically chose substituents at the acyl carbon atom
that do not contain any nitrogen atoms to avoid the competitive
formation of intramolecular ring structures involving a B-N
dative bond.
(:OdC-N-C-B) ring structure in which the carbonyl oxygen
atom coordinates to the boron, effectively stabilizing the active
trans conformer of the dipeptide. Such intramolecular five-
1
membered-ring motifs with a B-O dative bond have been
observed in esters derived from boronic acids,2
5-27
and postu-
lated as intermediates in the stereoselective reduction of
neighboring carbonyl groups.2
8-30
However, relatively little is
known about the factors associated with the formation of these
intramolecular (:OdC-N-C-B) rings, or their influence on
the therapeutic efficacy of potential drugs. It should be
mentioned that the presence of intramolecular B-N dative
Results and Discussion
(
12) Jones, B.; Adams, S.; Miller, G. T.; Jesson, M. I.; Watanabe, T.;
Wallner, B. P. Blood 2003, 102, 1641.
13) Jones, B.; Miller, G. T.; Jesson, M. I.; Watanabe, T.; Wallner, B.
P.; Adams, S. Proc. Am. Soc. Clin. Oncol. 2003, 22, 215 (abstract 860).
14) Kane R. C.; Bross P. F.; Farrel, A. T.; Pazdur, R. Oncologist 2003,
, 508.
15) Mathews, D. A.; Alden, R. A.; Birktoft, J. J.; Freer, S. T.; Krout, J.
J. Biol. Chem. 1975, 250, 7120.
16) Bachovchin, W. W.; Wong, W. Y. L.; Farr-Jones, S.; Shenvi, A.
B.; Kettner, C. A. Biochemistry 1988, 27, 7689.
17) Matteson, D. S.; Sadhu, K. M.; Lienhard, G. E. J. Am. Chem. Soc.
981, 103, 5241.
18) Kinder, D. H.; Katzenellenbogen, J. A. J. Med. Chem. 1985, 28,
917.
Synthesis. The syntheses of the N-acyl-boroGly derivatives
a-f and their corresponding N-acyl-boroSar analogues 2a-f
1
(
were accomplished by adaptation of the methods described in
Scheme 1; detailed procedures are given in the Supporting
Information. The pinanediol ester of glycine or sarcosine boronic
(
8
(
3
9
40
acid was formylated with formic acid and then deprotected
4
1
(
using boron trichloride in methylene chloride at -78 °C to
afford the desired compounds 1a and 2a as outlined in Scheme
(
1
(
(31) Fisher, L.; Holme, T. J. Comput. Chem. 2001, 22, 913.
(32) Sood, A.; Sood, C. K.; Spielvogel, B. F.; Hall, I. H.; Wong, O. T.
J. Pharm. Sci. 1992, 49, 131.
(33) Rajendran, K. G.; Chen, S. Y.; Sood, A.; Spielvogel, B. F.; Hall, I.
H. Biomed. Pharmacother. 1995, 49, 131.
1
(
(
(
19) Shenvi, A. B. Biochemistry 1986, 25, 1286.
20) Kettner, C. A.; Shenvi, A. B. J. Biol. Chem. 1994, 259, 15106.
21) Flentke, G. R.; Munoz, E.; Hubner, B. T.; Plaut, A. G.; Kettner, C.
A.; Bachovchin, W. W. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 1556.
22) Kelly, T. A.; Adams, J.; Bachovchin, W. W.; Barton, R. W.;
Campbell, S. J.; Coutts, S. J.; Kennedy, C. A.; Snow, R. J. J. Am. Chem.
Soc. 1993, 115, 12637.
(34) Hall, I. H.; Chen, S. Y.; Rajendran, K. G.; Sood, B. F.; Spielvogel,
B. F.; Shih, J. EnViron. Health Perspect. 1994, 102, 21.
(35) Van Duin, M.; Peters, J. A.; Kieboom, A. P. G.; Van Bekkum, H.;
Tetrahedron 1984, 40, 2901.
(
(
23) Snow, R. J.; Bachovchin, W. W.; Barton, R. W.; Campbell, S. J.;
(36) Van Duin, M.; Peters, J. A.; Kieboom, A. P. G.; Van Bekkum, H.
Tetrahedron 1985, 41, 3411.
Freeman, D. M.; Gutheil, W. G.; Kelly, T. A.; Kennedy, C. A.; Krolikowski,
D. A.; Leonard, S. F.; Pargellis, C. A.; Tong, L.; Adams, J. J. Am. Chem.
Soc. 1994, 116, 10860.
(37) Pizer, R. D.; Ricatto, P. J.; Tihal, C. A. Polyhedron 1993, 12, 2137.
(38) Pizer, R. D.; Ricatto, P. J. Inorg. Chem. 1994, 33, 2402.
(39) (a) The pinanediol ester of glycine boronic acid was prepared from
(+)-pinanediol chloromethylboronate by using the method reported to
prepare boroAla-pn: Pechenov, A.; Stefanova, M. E.; Nicholas, R. A.; Peddi,
S.; Gutheil, W. G. Biochemistry 2003, 42, 579. (b) The pinanediol ester of
sarcosine boronic acid was prepared from dimethylamine by using the
method reported to prepare boroPro-pn: Gigson, F. S.; Singh, A. K.;
Soumeillant, M. C.; Manchand, P. S.; Humora, M.; Kronenthal, D. R. Org.
Proc. Res. DeV. 2002, 6, 814.
(
24) Unpublished results (J.H.L.); see Supporting Information.
(25) Biedryzycki, M.; Scouten, W. H.; Biedrzycka, Z. J. Organomet.
Chem. 1992, 431, 255.
26) Liu, X.; Hubbard, J. L.; Scouten, W. H. J. Organomet. Chem. 1995,
93, 91.
27) Matteson, D. S.; Michnick, J.; Willett, R. D.; Patterson, C. D.
Organometallics 1989, 8, 726.
28) Molander, G. A.; Bobbitt, K. L.; Murray, C. K. J. Am. Chem. Soc.
992, 114, 2759.
(
4
(
(
1
(40) Duckek, W.; Deutsch, J.; Vieth, S.; Niclas, H.-J. Synthesis 1996,
37.
(41) Martichonok, V.; Jones, J. B. J. Am. Chem. Soc. 1996, 118, 950.
(
(
29) Molander, G. A.; Bobbitt, K. L. J. Am. Chem. Soc. 1993, 115, 7517.
30) James, J. J.; Whiting, A. J. Chem. Soc., Perkin 2 1996, 1861.
J. Org. Chem, Vol. 71, No. 2, 2006 513