D. Chandra Rao et al. / Tetrahedron Letters 54 (2013) 828–829
829
O
O
OAc
O
O
HO
O
OMe
O
2
6
1
Scheme 1. Retro synthetic analysis of botryolide-E (1).
O
a
OH
OAc
b
c
2
3
4
OAc
OAc
d
OMe
CHO
O
6
5
O
N
N
O
OAc OH
O
e
HO
O
Cl
OMe
Ru
O
Cl
OH
O
7
1
Hoveyda Grubbs catalyst
Scheme 2. Reagents and conditions: (a) vinylmegnesium bromide, CuI, THF, ꢀ20 °C, 12h, 85%, (b) (Ac)
2
O, 0 °C to rt, 3 h, 90%, (c) CH
O (1:1), 0 °C, 24 h, 86%.
2
@CHCHO, dry DCM, Hoveyda Grubbs
catalyst, 3 h, rt, 92%, (d) MeO CH P(O)(OCH CF ,t-BuOH:H
2
2
2
3 2
)
, NaH, Dry THF ꢀ78 °C, 2 h, 76%, (e) AD Mix-
a
2
The synthesis of botryolide-E (1) is based on a sequence of reac-
tions starting from (R)-propylene oxide 2, which on vinylation was
converted to homoallylic alcohol 3. The secondary hydroxyl group
in compound 3 was reacted with acetic anhydride and pyridine to
afford compound 4. A mixture of compound 4 and acroline in 1:3
ratio was subjected to cross metathesis using second generation
Hoveyda Grubbs catalyst (5 mol %)10 in DCM under reflux condi-
tions to yield aldehyde 5 which was used for further reaction with-
out further purification (Scheme 2).
Supplementary data
Supplementary data (experimental procedure and analytical
References and notes
1.
Kocienski, P. J. Protecting Groups; Thieme: Stuttgart, 1994.
Then aldehyde 5 was subjected to Still’s modified Horner–
Wadsworth–Emmons reaction11 using NaH and bis(2,2,2-trifluoro
2.
Young, Ian S.; Baran, Phil S, Nat. Chem. 2009, 1, 193.
3
.
Fridkin, S. K.; Edwards, J. R.; Courval, J. M.; Hill, H.; Tenover, F. C.; Lawton, R.;
Gaynes, R. P.; McGowan, J. E., Jr Ann. Intern. Med. 2001, 135, 175.
Hoffmann, H. M. R.; Rabe, J. Angew. Chem., Int. Ed. Engl. 1985, 24, 94.
Li, D. H.; Zhu, T. J.; Liu, H. B.; Fang, C. Y.; Gu, Q. Q.; Zhu, W. M. Arch. Pharm. Res.
ethyl) (methoxy carbonyl methyl) phosphonate in dry THF at
4
5
.
.
ꢀ
78 °C to afford (E,Z)-ester 6 exclusively in 88% yield with the
traces of (E,E)-ester, that was separated by normal silica gel column
chromatography. Compound 6 was subjected to diastereo and
enantioselective Sharpless asymmetric dihydroxylation1 to afford
the final desired compound botryolide-E (1) instead of dihydroxy
ester 7. The dihydroxy compound (7) in situ was converted into fi-
nal botryolide-E (1). This indicates that lactonization has taken
2006, 29, 624.
6. Cateni, F.; Zilic, J.; Zacchigna, M.; Bonivento, P.; Frausin, F.; Scarcia, V. Eur. J.
Med. Chem. 2006, 41, 192.
2
7
8
.
.
Sy, A. A.; Swenson, D. C.; Gloer, J. B.; Wicklow, D. T. J. Nat. Prod. 2008, 71, 415.
Kumar Reddy, D.; Shekhar, V.; Prabhakar, P.; Chanti Babu, D.; Ramesh, D.;
Siddhardha, B.; Murthy, U. S. N.; Venkateswarlu, Y. Bioorg. Med. Chem. Lett.
2011, 21, 997.
9.
(a) Sridhar, M.; Kondal Reddy, G.; China Ramanaiah, B.; Narsaiah, C. Tetrahedron
Lett. 2012, 53, 5539; (b) Veeranjaneyulu, B.; Srilatha, M.; Chinna Reddy, G.; Das,
B. Helv. Chim. Acta 2012, 95, 1152.
place with a formation of the more stable
c
-lactone botryolide-E
2
5
7
25
D
(
1). The physical {½
a
ꢁ
ꢀ35.1 (c 0.1, CHCl
3
). Lit
½
aꢁ
ꢀ38 (c 0.05,
D
8
1
25
D
1
CHCl
3
), lit
½
a
ꢁ
ꢀ36.7 (c 0.05, CHCl
3
)}, and spectral data ( H
10. (a) Chatterjee, A. K.; Choi, T. L.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem. Soc.
2003, 125, 11360; (b) Bouz Bouz, S.; Simmons, R.; Cossy, J. Org. Lett. 2004, 6,
3
NMR and C NMR) of synthetically prepared compound 1 were
3
465.
1. Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405.
12. Kolb, H. C.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
7
,8
found to be in good agreement with the natural product.
1
A concise total synthesis of botryolide-E (1) has been achieved
in five linear steps from (R)-propylene oxide 2 in 46% overall yield,
in a strategy devoid of standard protection/deprotection protocols.
Acknowledgement
The authors D.C.R., D.K.R. and V.S. are thankful to CSIR, New
Delhi, for the financial support.