Journal of the American Chemical Society
Article
N. A.; Rutzler, K. C. J. Med. Chem. 1991, 34, 3339. (b) Pettit, G. R.;
̈
preparative purpose, it was not necessary to separate E- and Z-
enones 30.
Tan, R.; Gao, F.; Williams, M. D.; Doubek, D. L.; Boyd, M. R.;
Schmidt, J. M.; Chapuis, J.-C.; Hamel, E.; Bai, R.; Hooper, J. N. A.;
Tackett, L. P. J. Org. Chem. 1993, 58, 2538. (c) Litaudon, M.; Hart, J.
B.; Blunt, J. W.; Lake, R. J.; Munro, M. H. G. Tetrahedron Lett. 1994,
35, 9435. (d) Litaudon, M.; Hickford, S. J. H.; Lill, R. E.; Lake, R. J.;
Blunt, J. W.; Munro, M. H. G. J. Org. Chem. 1997, 62, 1868.
(e) Hickford, S. J. H.; Blunt, J. W.; Munro, M. H. G. Bioorg. Med.
Chem. 2009, 17, 2199.
(3) For example, see: (a) Hart, J. B.; Lill, R. E.; Hickford, S. J. H.;
Blunt, J. W.; Munro, M. H. G. Drugs from the Sea; Fusetani, N., Ed.;
Karger: Basel, Switzerland, 2000, p 134. (b) Jackson, K. L.; Henderson,
J. A.; Phillips, A. J. Chem. Rev. 2009, 109, 3044.
(4) For the development of anticancer drug Eribulin based on the
right-half structure of halichondrin B, see: (a) Yu, M. J.; Kishi, Y.;
Littlefield, B. A. in Anticancer Agents from Natural Products, Cragg, G.
M., Kingston, D. G. I., Newman, D. J., Eds.; CRC Press: Boca Raton,
FL, 2005, 241. (b) Yu, M. J.; Zheng, W.; Seletsky, B. M.; Littlefield, B.
A.; Kishi, Y. Annu. Rep. Med. Chem. 2011, 46, 227.
(5) For the synthetic work on the halichondrins from this group, see:
(a) Halichondrin B: Aicher, T. D.; Buszek, K. R.; Fang, F. G.; Forsyth,
C. J.; Jung, S. H.; Kishi, Y.; Matelich, M. C.; Scola, P. M.; Spero, D. M.;
Yoon, S. K. J. Am. Chem. Soc. 1992, 114, 3162. (b) Halichondrin C:
On TBAF treatment, 31 furnished 32 as a ∼1:1 mixture of
12α:12β diastereomers. With an ion-exchange resin-based
device,27 this mixture was transformed cleanly to C1−C19
building block 9 of halichondrin B without isolation/
separation/equilibration of intermediates. On comparison of
spectroscopic data (1H and 13C NMR, MS, TLC), 9 thus
obtained was found to be superimposable on the authentic
sample.9
CONCLUSION
■
A unified synthesis of the C1−C19 building blocks 8−10 of
halichondrins A−C was developed from the common synthetic
intermediates 26a,b. Acetylenic ketones 26a,b were in turn
synthesized via selective activation/coupling of polyhalogenated
nucleophiles 23a,b with aldehyde 11 in a (Ni)/Cr-mediated
coupling reaction. Compared with Ni/Cr-mediated couplings
of vinyl iodides and aldehydes, this (Ni)/Cr-mediated coupling
exhibited two unique features. First, the coupling was found to
proceed with a trace amount or no added Ni-catalyst. Second,
TES-Cl, a dissociating agent to regenerate the Cr-catalyst, was
found to give a better yield than Zr(Cp)2Cl2.
́
Yamamoto, A.; Ueda, A.; Bremond, P.; Tiseni, P. S.; Kishi, Y. J. Am.
Chem. Soc. 2012, 134, 893. (c) Halichondrin A: Ueda, A.; Yamamoto,
A.; Kato, D.; Kishi, Y. J. Am. Chem. Soc. 2014, 136, 5171 and references
cited therein.
An adjustment of the oxidation state was required to
transform acetylenic ketones 26a,b into C1−C19 building
blocks 8 and 9 of halichondrins A and B, respectively. In the
halichondrin B series, a hydroxyl-directed (Me)4NBH(OAc)3
reduction of E- and Z-β-alkoxy-enones 30 was found cleanly to
achieve the required transformation, whereas a DMDO
oxidation of E-vinylogous ester 27 allowed to introduce the
C13 hydroxyl group with a high stereoselectivity in the
halichondrin A series. In the halichondrin C series, Hf(OTf)4
was used to convert double oxy-Michael product 28 into C1−
C19 building block 10.
(6) For synthetic efforts on halichondrin Bs by Salomon, Burke,
Yonemitsu, Phillips, and Yadav see: (a) Henderson, J. A.; Jackson, K.
L.; Phillips, A. J. Org. Lett. 2007, 9, 5299. Jackson, K. L.; Henderson, J.
A.; Motoyoshi, H.; Phillips, A. J. Angew. Chem., Int. Ed. 2009, 48, 2346
and the references cited therein. (b) Burke, S. D.; Buchanan, J. L.;
Rovin, J. D. Tetrahedron Lett. 1991, 32, 3961. Lambert, W. T.; Hanson,
G. H.; Benayoud, F.; Burke, S. D. J. Org. Chem. 2005, 70, 9382 and the
references cited therein. (c) Kim, S.; Salomon, R. G. Tetrahedron Lett.
1989, 30, 6279. Cooper, A. J.; Pan, W.; Salomon, R. G. Tetrahedron
Lett. 1993, 34, 8193 and the references cited therein. (d) Horita, K.;
Hachiya, S.; Nagasawa, M.; Hikota, M.; Yonemitsu, O. Synlett 1994,
38. Horita, K.; Nishibe, S.; Yonemitsu, O. Phytochem. Phytopharm.
2000, 386 and the references cited therein. (e) Yadav, J. S.; Reddy, C.
N.; Sabitha, G. Tetrahedron Lett. 2012, 53, 2504.
Lastly, we note that an application of the synthetic method
developed in the halichondrin A synthesis5c should allow us to
transform C1−C19 building blocks 8−10 into halichondrins
A−C, respectively.
(7) For the work on the Cr-mediated coupling reactions from this
group, see: (a) Jin, H.; Uenishi, J.-I.; Christ, W. J.; Kishi, Y. J. Am.
Chem. Soc. 1986, 108, 5644. (b) Wan, Z.-K.; Choi, H.-w.; Kang, F.-A.;
Nakajima, K.; Demeke, D.; Kishi, Y. Org. Lett. 2002, 4, 4431. (c) Choi,
H.-w.; Nakajima, K.; Demeke, D.; Kang, F.-A.; Jun, H.-S.; Wan, Z.-K.;
Kishi, Y. Org. Lett. 2002, 4, 4435. (d) Namba, K.; Kishi, Y. Org. Lett.
2004, 6, 5031. (e) Guo, H.; Dong, C.-G.; Kim, D.-S.; Urabe, D.; Wang,
J.; Kim, J. T.; Liu, X.; Sasaki, T.; Kishi, Y. J. Am. Chem. Soc. 2009, 131,
15387. (f) Liu, X.; Henderson, J. A.; Sasaki, T.; Kishi, Y. J. Am. Chem.
Soc. 2009, 131, 16678. (g) Liu, X.; Li, X.; Chen, Y.; Hu, Y.; Kishi, Y. J.
Am. Chem. Soc. 2012, 134, 6136 and references cited therein.
(8) For reviews on Cr-mediated carbon-carbon bond-forming
reactions, see: (a) Saccomano, N. A. in Comprehensive Organic
Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol.
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures, characterization data, and copies of
spectra data. The Supporting Information is available free of
■
S
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
1, p 173. (b) Furstner, A. Chem. Rev. 1999, 99, 991. (c) Wessjohann, L.
̈
A.; Scheid, G. Synthesis 1999, 1. (d) Takai, K.; Nozaki, H. Proc. Japan
Acad. Ser. B 2000, 76, 123. (e) Takai, K. Organic Reactions 2004, 64,
253. (f) Hargaden, G. C.; Guiry, P. J. Adv. Synth. Catal. 2007, 349,
2407.
ACKNOWLEDGMENTS
Financial support from the Eisai USA Foundation is gratefully
acknowledged.
■
(9) Yan, W.; Li, Z.; Kishi, Y. J. Am. Chem. Soc., 2015; DOI: 10.1021/
REFERENCES
■
(10) Cr-mediated couplings of halo-acetylenes with aldehydes were
first reported by Takai, Nozaki, and coworkers: Takai, K.; Kuroda, T.;
Nakatsukasa, S.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1985, 26,
5585. It should be noted, however, that the work had been done
before a special role of Ni-salt was recognized in the Cr-mediated
coupling reactions.
(1) (a) Uemura, D.; Takahashi, K.; Yamamoto, T.; Katayama, C.;
Tanaka, J.; Okumura, Y.; Hirata, Y. J. Am. Chem. Soc. 1985, 107, 4796.
(b) Hirata, Y.; Uemura, D. Pure Appl. Chem. 1986, 58, 701.
(2) For isolation of the halichondrins from different species of
sponges, see: (a) Pettit, G. R.; Herald, C. L.; Boyd, M. R.; Leet, J. E.;
Dufresne, C.; Doubek, D. L.; Schmidt, J. M.; Cerny, R. L.; Hooper, J.
E
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX