enantioselectivity (Scheme 1).6 Thus, under optimized
conditions, with as little as 1ꢀ4 mol % of a Ni(II) catalyst
prepared from [(allyl)NiBr]2, a phosphoramidite ligand 8
and a highly dissociated counteranion (BARFꢀ), proto-
typical substrates 9 and 10 gave the respective adducts 11
and 12 in >98% ee. Despite the modest yield in one of
these reactions [11 (82%), the rest rearranged starting
material, 1-methyl-7-methoxy-3,4-dihydronaphthalene)6a],
this two-step procedure from a ketone represents a major
improvement over the best routes previously reported for
the synthesis of this important class of compounds. For
example, 11 has been previously synthesized via stoichio-
metric oxazoline-directed alkylation (12 steps, 35% overall
yield, 99% ee)3k or an enzyme-catalyzed desymmetrization
of an R,R-disubstituted meso-dimethylmalonate (13 steps,
31% overall yield, 97% ee).3i Shibasaki et al. prepared a
closely related compound using an asymmetric intramole-
cular Heck reaction (∼10 steps, 37% yield, 93% ee).3l The
compound 12 has been prepared in ∼51% yield (92% ee)
from acetophenone in 4 steps using an enantioselective Cu-
catalyzed allylic alkylation, which uses 5 mol % of a
catalyst and 3 equivalents of Et2Zn.7 As a logical extension
of our work, we have been exploring applications of this
chemistry for the synthesis of biologically relevant targets,
and here we describe an approach to pyrrolidinoindolines.
Further applications for the syntheses of benzomorphan
analogs (ꢀ)-eptazocine and (þ)-aphanorphine are also
discussed.
Scheme 1. All Carbon Quaternary Centers via Catalytic Asym-
metric Hydrovinylation
allylation,2f Pd-catalyzed intramolecular allylation,4d
thiourea-2b,c or quaternary ammonium-2i catalyzed alky-
lation of an oxindole anion, (R)-BINOL-SnCl4-catalyzed
[3 þ 2]-cycloaddition,2a intramolecular FriedelꢀCrafts
alkylation,3a and Pd-catalyzed R-arylation of an enolate.4e
Recently our group reported highly enantioselective
Ni-catalyzed asymmetric hydrovinylation of R-alkylviny-
larenes in which a benzylic, all-carbon quaternary center
is generated in high yield and exceptionally high
(4) For a recent review, see: Majetich, G.; Shimkus, J. M. J. Nat.
Prod. 2010, 73, 284. For recent synthetic studies, see: (a) Fillion, E.;
Fishlock, D. J. Am. Chem. Soc 2005, 127, 13144. (b) Node, M.; Ozeki,
M.; Planas, L.; Nakano, M.; Takita, H.; Mori, D.; Tamatani, S.;
Kajimoto, T. /J. Org. Chem. 2010, 75, 190. (c) Liang, G.; Xu, Y.; Seiple,
I. B.; Trauner, D. J. Am. Chem. Soc. 2006, 128, 11022. (d) McFadden,
R. M.; Stoltz, B. M. J. Am. Chem. Soc. 2006, 128, 7738. (e) Liao, X.;
Stanley, L. M.; Hartwig, J. F. J. Am. Chem. Soc. 2011, 133, 2088.
(5) Monograph: Quaternary Stereocenters. Challenges and Solutions
for Organic Synthesis; Christoffers, J.; Baro, A., Eds.; Wiley-VCH:
Weinheim, 2005. Reviews: (a) Das, J. P.; Marek, I. Chem. Commun. 2011,
47, 4593. (b) Steven, A.; Overman, L. E. Angew. Chem., Int. Ed. 2007, 46,
5488. (c) Douglas, C. J.; Overman, L. E. Proc. Natl. Acad. Sci. U.S.A.
2004, 101, 5363. (d) Denissova, I.; Barriault, L. Tetrahedron 2003, 59,
10105. (e) Corey, E. J.; Guzman-Perez, A. Angew. Chem., Int. Ed. 1998,
37, 388. (f) Romo, D.; Meyers, A. I. Tetrahedron 1991, 47, 9503.
(g) Martin, S. F. Tetrahedron 1980, 36, 419. For a recent contribution
and updated list of references, see: (h) Zhang, P.; Le, H.; Kyne, R. E.;
Morken, J. P. J. Am. Chem. Soc. 2011, 133, 9716.
(6) (a) Zhang, A.; RajanBabu, T. V. J. Am. Chem. Soc. 2006, 128,
5620. (b) Smith, C. R.; Zhang, A.; Mans, D. J.; RajanBabu, T. V. Org.
Synth. 2008, 85, 248. (c) See Supporting Information for chromatograms
from chiral stationary phase GC separation of 11 and 15. For closely
related reactions using spirophosphoramidites as ligands, see: (d) Shi,
W.-J.; Zhang, Q.; Xie, J.-H.; Zhu, S.-F.; Hou, G.-H.; Zhou, Q.-L. J. Am.
Chem. Soc. 2006, 128, 2780. For recent reviews of asymmetric hydro-
vinylation, see: (e) RajanBabu, T. V. Synlett 2009, 853. (f) RajanBabu,
T. V. Chem. Rev. 2003, 103, 2845. (g) Jolly, P. W.; Wilke, G. In Applied
Homogeneous Catalysis with Organometallic Compounds; Cornils, B.,
Herrmann, W. A., Eds.; VCH: New York, 1996; Vol. 2, pp 1024ꢀ1048.
Hydrovinylation is one of the rare reactions where a premetallated
C-nucleophile is not needed for a CꢀC bond formation. For a review of
other similar reactions, see: (h) Bower, J. F.; Kim, I. S.; Patman, R. L.;
Krische, M. J. Angew. Chem., Int. Ed. 2009, 48, 34. For first use of
phosphoramidites in HV reactions under our reaction conditions, see: (i)
(2) For leading references to syntheses of pyrrolidinoindolines, see
asymmetric catalytic routes: (a) Repka, L. M.; Ni, J.; Reisman, S. E.
J. Am. Chem. Soc. 2010, 132, 14418. (b) Liu, X.-L.; Liao, Y.-H.; Wu,
Z.-J.; Cun, L.-F.; Zhang, X.-M.; Yuan, W.-C. J. Org. Chem. 2010, 75,
4872. (c) Bui, T.; Syed, S.; Barbas, C. F. J. Am. Chem. Soc. 2009, 131,
8758. (d) Nakao, Y.; Ebata, S.; Yada, A.; Hiyama, T.; Ikawa, M.;
Ogoshi, S. J. Am. Chem. Soc. 2008, 130, 12874. (e) Yasui, Y.; Kamisaki, H.;
Takemoto, Y. Org. Lett. 2008, 10, 3303. (f) Trost, B. M.; Zhang, Y.
J. Am. Chem. Soc. 2006, 128, 4590. (g) ElAzab, A. S.; Taniguchi, T.;
Ogasawara, K. Org. Lett. 2000, 2, 2757. (h) Matsuura, T.; Overman,
L. E.; Poon, D. J. J. Am. Chem. Soc. 1998, 120, 6500. (i) Lee, T. B. K.;
Wong, G. S. K. J. Org. Chem. 1991, 56, 872. Notable noncatalytic routes:
(j) Espejo, V. R.; Li, X.-B.; Rainier, J. D. J. Am. Chem. Soc. 2010, 132,
8282. (k) Kulkarni, M. G.; Dhondge, A. P.; Borhade, A. S.; Gaikwad,
D. D.; Chavhan, S. W.; Shaikh, Y. B.; Ningdale, V. B.; Desai, M. P.;
Birhade, D. R.; Shinde, M. P. Tetrahedron Lett. 2009, 50, 2411.
(l) Padwa, A.; Nara, S.; Wang, Q.-S. J. Org. Chem. 2005, 70, 8538.
(m) Santos, P. F.; Srinivasan, N.; Almeida, P. S.; Lobo, A. M.; Prabhakar,
S. Tetrahedron 2005, 61, 9147. (n) Huang, A.; Kodanko, J. J.; Overman,
L. E. J. Am. Chem. Soc. 2004, 126, 14043. (o) Rege, P. D.; Johnson, F.
J. Org. Chem. 2003, 68, 6133. (p) Kawahara, M.; Nishida, A.; Nakagawa,
M. Org. Lett. 2000, 2, 675. (q) Marino, J. P.; Bogdan, S.; Kimura, K. J. Am.
Chem. Soc. 1992, 114, 5566. (r) Node, M.; Itoh, A.; Masaki, Y.; Fuji, K.
Heterocycles 1991, 32, 1705. (s) Takano, S.; Goto, E.; Hirama, M.;
Ogasawara, K. Chem. Pharm. Bull. 1982, 30, 2641. (t) Julian, P. L.; Pikl,
J. J. Am. Chem. Soc. 1935, 57, 539.
(3) Representative examples of recent syntheses: (a) Mai, D. N.;
Rosen, B. R.; Wolfe, J. P. Org. Lett. 2011, 13, 2932. (b) Medjahdi, M.;
ꢀ
Gonzalez, G., J. C.; Foubelo, F.; Yus, M. Eur. J. Org. Chem. 2011, 2230.
(c) Nakao, Y.; Ebata, S.; Yada, A.; Hiyama, T.; Ikawa, M.; Ogoshi, S.
J. Am. Chem. Soc. 2008, 130, 12874. (d) Yang, X.; Zhai, H.; Li, Z. Org.
Lett. 2008, 10, 2457. (e) Ma, Z.; Zhai, H. Synlett 2007, 161. (f) Grainger,
R. S.; Welsh, E. J. Angew. Chem., Int. Ed. 2007, 46, 5377. (g) Bower, J. F.;
Szeto, P.; Gallagher, T. Org. Biomol. Chem. 2006, 5, 143. (h) Taylor,
S. K.; Ivanovic, M.; Simons, L. J.; Davis, M. M. Tetrahedron: Asym-
metry 2003, 14, 743. (i) Fadel, A.; Arzel, P. Tetrahedron. Asymmetry
1997, 8, 371. (j) Shiotani, S.; Okada, H.; Nakamata, K.; Yamamoto, T.;
Sekino, F. Heterocycles 1996, 43, 1031. (k) Hulme, A. N.; Henry, S. S.;
Meyers, A. I. J. Org. Chem. 1995, 60, 1265. (l) Takemoto, T.; Sodeoka,
M.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1993, 115, 8477.
Erratum: J. Am. Chem. Soc. 1994, 116, 11207. (m) Takano, S.; Inomata,
K.; Sato, T.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1989, 1591.
ꢀ
Francio, G.; Faraone, F.; Leitner, W. J. Am. Chem. Soc. 2002, 124, 736.
(7) Kacprzynski, M. A.; Hoveyda, A. H. J. Am. Chem. Soc. 2004,
126, 10676.
(8) Smith, C. R.; RajanBabu, T. V. J. Org. Chem. 2009, 74, 4896.
(9) See the Supporting Information for the details of the X-ray
crystallographic analysis of 21 and 27. An ORTEP of 21 and 27 with
more legible atom-numbering is also included there.
Org. Lett., Vol. 13, No. 24, 2011
6597