Crystal Growth & Design
ARTICLE
supergroup. The major significance of this emulation of P21/n
space filling is highly efficient packing. Of the 230 space groups,
the monoclinic P21/c space group and its glide equivalents are
exhibited by more than one-third of all the entries in the CSD.46
Pseudosymmetry and Accuracy. Intermolecular interac-
tions may be considered to be chemical constraints. The hydro-
gen-bond ring pattern places the set of molecules (þ)-A and
(ꢀ)-B within close proximity to each other (Figure 2). Another
chemical constraint is the aromaticꢀaromatic interaction which
keeps the phenyl centroids in the set of molecules (þ)-A[1 ꢀ x, y
þ 0.5, 1 ꢀ z] and (ꢀ)-B[1 ꢀ x, y ꢀ 0.5, 1 ꢀ z] also close
(Figure 4). The statistically determined best points of pseudoin-
version between the almost enantiotopic skeletons in each set of
two molecules in the chiral crystal structure are located at the
respective positions [0.779(3),0.501(2),0.246(4)] and
[0.221(3),0.501(2),0.751(4)]. Corresponding ideal special posi-
tions in an achiral P21/n cell are at [3/4,1/2,1/4] and [1/4,1/
2,3/4] using the same origin. Thus, the pseudosymmetry ele-
ments have been relocated from ideal positions. The largest
deviation in the accuracy of the best points appears to be along
the a-axis (the x-coordinates). The pseudoinversion point in the
hydrogen-bonding set is between the two molecules and is
þ0.029(3) x-fractional coordinate units (ca. 0.3 Å) above the
ideal x = 3/4 location. The pseudoinversion point in the
aromaticꢀaromatic interaction set is also between the two
molecules and is ꢀ0.029(3) x-fractional coordinate units
(∼0.3 Å) below the ideal x = 1/4 location. Therefore, pseudoin-
version symmetry in the P21 lattice has enabled a relative
displacement of ca. 0.6 Å along the a-axis between the two sets
of chemically constrained molecules. By Group Theory, this
separation is also manifested by the relative large rmS(x-trans-
lation) of 0.608 Å for the n-glide.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: rglaser@bgu.ac.il.
’ ACKNOWLEDGMENT
This work would not have been possible without the gener-
osity of Prof. David Avnir (Hebrew University of Jerusalem) who
provided us with access to his CSM and Error Estimation
Programs. The authors express their gratitude to him and his
co-workers for their warm encouragement and kindness.
’ REFERENCES
(1) Guijarro, A.; Yus, M. In The Origin of Chirality in the Molecules of
Life; The Royal Society of Chemistry: The United Kingdom, 2009;
pp 150.
(2) Eliel, E. L.; Wilen, S. H.; Mander, L. N. In Stereochemistry of
Organic Compounds; John Wiley & Sons: New York, 1994; pp 1267.
(3) Desiraju, G. R. Cryst. Eng. Chem. 2007, 9, 91.
(4) Allen, F. H. Acta Crystallogr. B 2002, 58, 380.
(5) Steed, J. W. Cryst. Eng. Chem. 2003, 5, 169.
(6) Bishop, R.; Scudder, M. L. Cryst. Growth Des. 2009, 9, 2890.
(7) Gavezzotti, A. Cryst. Eng. Chem. 2008, 10, 389.
(8) Zabrodsky, H.; Peleg, S.; Avnir, D. J. Am. Chem. Soc. 1992,
114, 7843.
(9) Zabrodsky, H.; Peleg, S.; Avnir, D. J. Am. Chem. Soc. 1993,
115, 8278.
(10) Avnir, D.; Katzenelson, O.; Keinan, S.; Pinsky, M.; Pinto, Y.;
Salomon, Y.; Zabrodsky, H. The Measurement of Symmetry and Chirality:
Conceptual Aspects; Rouvray, D. H., Ed.; Research Studies Press:
Taunton, England, 1997; pp 283.
(11) Pinsky, M.; Avnir, D. Inorg. Chem. 1998, 37, 5575.
(12) Pinsky, M.; Yogev-Einot, D.; Avnir, D. J. Comput. Chem. 2003,
24, 786.
’ CONCLUSIONS
(13) Pinsky, M.; Dryzun, C.; Casanova, D.; Alemany, P.; Avnir, D.
J. Comput. Chem. 2008, 29, 2712.
One type of desymmetrization of a space group preserves
some of its symmetry operations and converts others into
pseudosymmetry relationships. Pseudosymmetry in this false
conglomerate allows the larger skeletal fragment and the phenyl
ring of the secondary ammonium salt (1) to assume different
structural roles within the lattice. Low pseudosymmetry mea-
surements of rmS(i) = 0.088 Å and rmS(σ) = 0.077 Å for the
skeletal fragments testify to a high fidelity for the pseudosym-
metry operations which interconvert handedness. As a result, the
two spatially demanding skeletons of opposite handedness in the
asymmetric unit of 1 emulate a P21/n higher order packing
efficiency and hydrogen bonding, while symmetry breaking
aromaticꢀaromatic interactions are simultaneously allowed
to exist.
(14) Pinsky, M.; Casanova, D.; Alemany, P.; Alvarez, S.; Avnir, D.;
Dryzun, C.; Kizner, Z.; Sterkin, A. J. Comput. Chem. 2008, 29, 190.
(15) Zabrodsky, H.; Avnir, D. J. Am. Chem. Soc. 1995, 117, 462.
(16) Cirera, J.; Alemany, P.; Alvarez, S. Chem.—Eur. J. 2004, 10, 190.
(17) Alvarez, S.; Avnir, D.; Llunell, M.; Pinsky, M. New J. Chem.
2002, 26, 996.
(18) Yogev-Einot, D.; Avnir, D. Chem. Mater. 2003, 15, 464.
(19) Alvarez, S.; Alemany, P.; Avnir, D. Chem. Soc. Rev. 2005,
34, 313.
(20) Yogev-Einot, D.; Avnir, D. Tetrahedron: Asymmetry 2006,
17, 2723.
(21) Steinberg, A.; Karni, M.; Avnir, D. Chem.—Eur. J. 2006,
12, 8534.
(22) Dryzun, C.; Mastai, Y.; Shvalb, A.; Avnir, D. J. Mater. Chem.
2009, 19, 2062.
(23) Dryzun, C.; Avnir, D. Phys. Chem. Chem. Phys. 2009, 11, 9653.
(24) Saragusti, I.; Sharon, I.; Katzenelson, O.; Avnir, D. J. Archeol. Sci.
1998, 25, 817.
(25) Echeverria, J.; Alvarez, S. Inorg. Chem. 2008, 47, 10965.
(26) Cirera, J.; Ruiz, E.; Alvarez, S. Organometallics 2005, 24, 1556.
(27) Alvarez, S. Dalton Trans. 2005, 2209.
(28) Alvarez, S.; Alemany, P.; Avnir, D. Chem. Soc. Rev. 2005,
34, 313.
(29) Echeverria, J.; Casanova, D.; Llunell, M.; Alemany, P.; Alvarez,
S. Chem. Commun. 2008, 2717.
’ ASSOCIATED CONTENT
S
Supporting Information. A CIF file, scheme, and synth-
b
esis details of salt 1, seven tables of crystal data and structure
refinement, non-hydrogen atomic coordinates and equivalent
isotropic displacement parameters, bond lengths and angles,
anisotropic displacement parameters, hydrogen coordinates
and isotropic displacement parameters, torsion angles, and
hydrogen-bonds for 1, explanation of the Avnir CSM calculation,
and Figure 9 showing the deviation of a distorted C3h structure
from one of ideal C3 symmetry. This material is available free of
(30) Collins, A.; Cooper, R. I.; Watkin, D. J. J. Appl. Crystallogr. 2006,
29, 842.
(31) Kroumova, E.; Aroyo, M. I.; Perez-Mato, S.; Ivantchev, J. M.;
Wondratschek, H. J. Appl. Crystallogr. 2001, 31, 783.
1269
dx.doi.org/10.1021/cg1014994 |Cryst. Growth Des. 2011, 11, 1262–1270