1434
D. Sarkar et al. / Tetrahedron Letters 50 (2009) 1431–1434
5. (a) Graham, S. R.; Murphy, J. A.; Kennedy, A. R. J. Chem. Soc., Perkin Trans. 1 1999,
3071–3073; (b) Rodriguez, R.; Mosses, J.; Cowley, A.; Baldwin, J. E. Org. Biomol.
Chem. 2005, 3, 3488–3495.
6. Biswas, B.; Sarkar, D.; Venkateswaran, R. V. Tetrahedron 2008, 64, 3212–3216.
7. Walenzyk, T.; Carola, C.; Buchholz, H.; Konig, B. Tetrahedron 2005, 61, 7366–
7377.
work-up of the reaction furnished a mixture of alboatrin 3 and o-
methyl alboatrin 23, indicating a primary ring cleavage followed
by re-cyclisation prior to demethylation. Another aspect of great
interest and encouragement that emerged from these observations
was that the stereochemistry of the Claisen rearrangement product
20 was irrelevant for the final outcome of the synthesis. Indeed,
when a mixture of both the isomers 20a and 20b was subjected
to the sequence of reactions involving LAH reduction, acid treat-
ment and demethylation, alboatrin 3 was the sole product isolated
in an excellent overall yield. To circumvent the problem of epimer-
isation under Lewis acid conditions, demethylation of 25 was tried
with sodium ethyl mercaptide. This afforded the expected epi-
alboatrin 2610 in 86% yield as the only product. 1H NMR spectral
data which matched with the reported5a values attested to the
identity of the product. epi-Alboatrin also when treated with BBr3
under previously stated demethylation conditions fully isomerised
to alboatrin.
In summary, we have developed a very efficient and stereocon-
trolled route to the linear tricyclic network of the xyloketals by
employing a diastereoselective Claisen rearrangement and an
intramolecular cationic cyclisation as the key steps, and demon-
strated their efficacy by applying the methodology to a short, high
yield synthesis of the phytotoxic metabolite alboatrin. The synthe-
sis affords the final product in nine steps from the resacetophenone
14 in an overall yield of 44%. A unique case of isomerisation of the
epi to the natural isomer under Lewis acid conditions has also been
observed. It is anticipated that with appropriate modifications in
the substitution pattern in the aromatic ring, this route will serve
as a convenient access to the xyloketals.
8. Srikrishna, A.; Viswajanani, R.; Sattigeri, J. A.; Yelamaggad, C. V. Tetrahedron
Lett. 1995, 36, 2347–2350.
9. (a) Johnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brockson, T. J.; Li, T.;
Faulkner, D. J.; Petersen, M. R. J. Am. Chem. Soc. 1970, 92, 741–743; (b)
Bartlett, P. D. Tetrahedron 1980, 36, 2–72; (c) Daub, G. W.; Shanklin, P. L.;
Tata, C. J. Org. Chem. 1986, 51, 3402–3405; (d) Fukuda, Y.; Okamoto, Y.
Tetrahedron 2002, 58, 2513–2521; (e) Srikrishna, A.; Ramachary, D. B.
Tetrahedron Lett. 2002, 43, 2765–2768; (f) Martin Castro, A. M. Chem. Rev.
2004, 104, 2939–3002.
10. All new compounds reported here gave analytical and spectral data consistent
with assigned structures. Selected spectral data: For 11: 1H NMR (300 MHz,
CDCl3) d 1.25 (t, J = 6.9 Hz, 3H); 2.4 (dd, J = 8.0, 15.6 Hz, 1H); 2.59 (dd, J = 6.6,
15.6 Hz, 1H), 2.65 (dd, J = 6.6, 15.6 Hz, 1H); 2.99 (dd, J = 4.8, 15.6 Hz, 1H); 3.18–
3.11 (m, 1H); 4.17 (q, J = 6.9 Hz, 2H); 4.27 (s, 1H); 4.60 (s, 1H); 6.90 (t,
J = 7.8 Hz, 2H); 7.04 (d, J = 7.2 Hz, 1H); 7.15 (t, J = 7.5 Hz, 1H). 13C NMR
(75 MHz, CDCl3) d 14.2, 30.6, 32.7, 37.0, 60.7, 89.8, 115.8, 120.7, 121.5, 127.9,
129.2, 152.4, 157.8, 171.7. For 13: 1H NMR (300 MHz, CDCl3) d 1.58 (s, 3H);
1.73–1.80 (m, 1H); 2.02–2.07 (m, 1H); 2.42–2.48 (m, 1H); 2.79 (d, J = 16.6 Hz,
1H); 3.06 (dd, J = 5.7, 16.6 Hz, 1H); 3.88–4.02 (m, 2H); 6.83–6.89 (m, 2H); 7.06–
7.14 (m, 2H). 13C NMR (75 MHz, CDCl3) d 23.2, 26.3, 28.8, 41.1, 66.8, 107.1,
117.0, 119.4, 120.7, 127.7, 129.3, 153.4. For 16: mp 132–134 °C; IR (KBr) mmax
1645 cmÀ1, 1737 cmÀ1 1H NMR (300 MHz, CDCl3) d 1.35 (t, J = 6.9 Hz, 3H);
;
2.72 (s, 3H);3.80 (s, 3H); 4.37 (q, J = 6.9 Hz, 2H); 6.66 (s, 1H), 6.77 (s, 1H); 6.88
(s, 1H); 13C NMR (75 MHz, CDCl3) d 14.2, 22.9, 55.8, 62.8, 98.8, 116.36, 117.2,
117.4, 142.8, 150.4, 159.5, 160.8, 163.4, 179.4. HRMS (EI) Found: MH+,
263.0928; C14H14O5 requires; MH+ 263.0921. For 17: IR (Neat) mmax
1732 cmÀ1 1H NMR (300 MHz, CDCl3) d 1.28 (t, J = 7.2 Hz, 3H); 2.09 (s, 3H);
.
3.29 (d, J = 4.2 Hz, 2H); 3.66 (s, 3H); 4.23 (q, J = 7.2 Hz, 2H); 6.13 (t, J = 4.2 Hz,
1H); 6.37 (s, 1H); 6.38 (s, 1H). 13C NMR (75 MHz, CDCl3) d 14.6, 19.6, 22.8, 55.7,
61.8, 99.7, 109.4, 110.6, 112.4, 138.3, 141.8, 152.1, 159.2, 162.1. HRMS (ESI)
Found: M+Na+, 271.0946; C14H16O4 requires; M+Na+, 271.0946. For 20a: IR
(Neat) mmax 1732 cmÀ1 1H NMR (300 MHz, CDCl3) d 1.16 (d, J = 6.9 Hz, 3H);
.
1.26 (t, J = 7.2 Hz, 3H); 2.2 (s, 3H); 2.52–2.57 (m, 1H); 2.70 (d, J = 4.8 Hz, 2H);
2.86–2.89 (m, 1H); 3.74 (s, 3H); 4.10 (q, J = 6.9 Hz, 2H); 4.17 (s, 1H); 4.56 (s,
1H); 6.33 (s, 1H); 6.38 (s, 1H). 13C NMR (75 MHz, CDCl3) d 14.5, 15.2, 19.6, 24.1,
39.2, 41.0, 55.6, 60.8, 90.9, 99.1, 110.1, 111.3, 137.8, 153.7 157.3, 159.3, 175.8.
HRMS (EI) Found: MH+, 291.1589; C17H22O4 requires; MH+ 291.1598. For 20b:
Acknowledgements
We sincerely acknowledge financial support from the Depart-
ment of Science and Technology, Government of India. D.S. and
S.G. thank the Council of Scientific and Industrial Research, New
Delhi, for Senior Research fellowships.
IR (Neat) 1732 cmÀ1 1H NMR (300 MHz, CDCl3) d 1.19 (d, J = 6.9 Hz, 3H); 1.24
.
(t, J = 7.2 Hz, 3H); 2.14 (s, 3H); 2.43–2.47 (m, 1H); 2.61 (dd, J = 2.4, 16.2 Hz,
1H); 2.73 (dd, J = 5.1, 16.2 Hz, 1H); 2.82–2.87 (m, 1H); 3.74 (s, 3H); 4.13 (q,
J = 7.2 Hz, 2H); 4.25 (s, 1H); 4.66 (s, 1H); 6.30 (s, 1H); 6.38 (s, 1H). 13C NMR
(75 MHz, CDCl3) d 14.4, 16.4, 19.4, 26.3, 39.7, 39.8, 55.3, 60.6, 92.7, 98.7, 109.9,
111.1, 138.1, 153.3, 155.4, 158.8, 176.0. For 25: Colourless solid. Mp 54–55 °C;
1H NMR (300 MHz, CDCl3) d 0.83 (d, J = 6.9 Hz, 3H), 1.51 (s, 3H), 2.21 (s, 3H),
2.43–2.53 (m, 2H); 2.68–2.70 (m, 2H); 3.58 (t, J = 8.1 Hz, 1H), 3.71 (s, 3H), 4.12
(t, J = 8.1 Hz, 1H), 6.29 (d, J = 2.4 Hz, 1H), 6.35 (s, 1H). 13C NMR (75 MHz, CDCl3)
d 14.1, 19.4, 20.8, 24.3, 35.5, 43.8, 55.2, 74.8, 100.1, 107.9, 109.4, 113.1, 136.8,
155.2, 158.7; HRMS (EI) Found: MH+, 249.1484, C15H20O3 requires 249.1485.
For 26: colourless solid. Mp 145–148 °C; 1H NMR (300 MHz, CDCl3) d 0.84 (d,
J = 6.8 Hz, 3H); 1.53 (s, 3H); 2.19 (s, 3H); 2.44–2.55 (m, 2H); 2.68–2.69 (m, 2H);
3.57 (t, J = 6.7 Hz, 1H); 4.12 (t, J = 7.9 Hz, 1H); 5.9 (br s, 1H); 6.32 (s, 1H); 6.35
(d, J = 2.1, 1H). 13C NMR (75 MHz, CDCl3) d 13.9, 19.2, 20.6, 24.4, 35.5, 44.0,
74.80, 102.2, 108.1, 110.3, 112.8, 136.8, 155.0, 155.2.
References and notes
1. (a) Lin, Y.; Wu, X.; Feng, S.; Jiang, G.; Luo, J.; Zhou, S.; Vrijmoed, L. L. P.; Jones, E.
B. G.; Krohn, K.; Steingrover, K.; Zsila, F. J. Org. Chem. 2001, 66, 6252–6256; (b)
Wu, X.; Liu, X.; Lin, Y.; Luo, J.; She, Z.; Houjin, L.; Chan, W. L.; Antus, S.; Kurtan,
T.; Elsasser, B.; Krohn, K. Eur. J. Org. Chem. 2005, 4061–4064.
2. Romero, M.; Sandez, I.; Pujol, M. D. Curr. Med. Chem.: Cardiovasc. Hematol.
Agents 2003, 1, 113–141.
3. (a) Krohn, K.; Riaz, M.; Florkel, U. Eur. J. Org. Chem. 2004, 1261–1270; (b)
Pettigrew, J. D.; Freeman, R. P.; Wilson, P. D. Can. J. Chem. 2004, 82, 1640–1648;
(c) Pettigrew, J. D.; Cadieux, J. A.; So, S. S. S.; Wilson, P. D. Org. Lett. 2005, 7, 467;
(d) Pettigrew, J. D.; Wilson, P. D. Org. Lett. 2006, 8, 1427–1429; (e) Pettigrew, J.
D.; Wilson, P. D. J. Org. Chem. 2006, 71, 1620–1625.
11. Starkov, S. P.; Goncharenko, G. A.; Volkotrieb, M. N.; Zhidkova, L. V. Izvextiya
Vysshikh Uchebnykh Zavedenji, Khimiyai Khimicheskaya Tekhnologiya 1993, 36,
86.
12. In our paper (Ref. 5), the 1 H NMR value for the C-3 secondary methyl protons
in (3) was mistakenly given as d 0.89, instead of d 1.04. See correction,
Tetrahedron 2008, 64, 6809.
4. Ichihara, A.; Nonaka, M.; Sakamura, S.; Sato, R.; Tajimi, A. Chem. Lett. 1988, 27–
30.