[2] M.A. Baldo, S. Lamansky, P.E. Burrows, et al., Very high-efficiency green organic light-emitting devices based on
electrophosphorescence, Appl. Phys. Lett. 75 (1999) 4-6.
[3] M.A. Baldo, C. Adachi, S.R. Forrest, et al., High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium
doped into electron-transporting materials, Appl. Phys. Lett. 77 (2000) 904-906.
[4] S. Lamansky, P. Djurovich, D. Murphy, et al., Synthesis and characterization of phosphorescent cyclometalated iridium complexes, Inorg.
Chem. 40 (2001) 1704-1711.
[5] N.G. Park, M.Y. Kwak, B.O. Kim, et al., Jpn. J. Appl. Phys. 41 (2002) 1523-1526.
[6] A.B. Tamayo, B.D. Alleyne, P.I. Djurovich, et al., Synthesis and characterization of facial and meridional tris-cyclometalated iridium(III)
complexes, J. Am. Chem. Soc. 125 (2003) 7377-7387.
[7] W.Y. Wong, C.L. Ho, Z.Q. Gao, et al., Multifunctional iridium complexes based on carbazole modules as highly efficient
electrophosphores, Angew. Chem. Int. Ed. 45 (2006) 7800-7803.
[8] H.H. Chou, C.H. Cheng, A highly efficient universal bipolar host for blue, green, and red phosphorescent OLEDs, Adv. Mater. 22 (2010)
2468-2471.
[9] Y.T. Tao, Q.A. Wang, C.L. Yang, et al., Multifunctional triphenylamine/oxadiazole hybrid as host and exciton‐blocking material: high
efficiency green phosphorescent OLEDs using easily available and common materials, Adv. Funct. Mater. 20 (2010) 2923-2929.
[10] D. Sykes, I.S. Tidmarsh, A. Barbieri, et al., d → f energy transfer in a series of Ir(III)/Eu(III) dyads: energy-transfer mechanisms and
white-light emission, Inorg. Chem. 50 (2011) 11323-11339.
[11] Y. Zheng, A.S. Batsanov, R.M. Edkins, et al., Thermally induced defluorination during a mer to fac transformation of a blue-green
phosphorescent cyclometalated iridium(III) complex, Inorg. Chem. 51 (2012) 290-297.
[12] C.L. Ho, W.Y. Wong, Q. Wang, et al., A multifunctional iridium-carbazolyl orange phosphor for high-performance two-element woled
exploiting exciton-managed fluorescence/phosphorescence, Adv. Funct. Mater. 18 (2008) 928-937.
[13] F. Babudri, G.M. Farinola, F. Naso, et al., Fluorinated or A short history of shelx. acta crystallogr a64 materials for electronic and
optoelectronic applications: the role of the fluorine atom, Chem. Commun. (2007) 1003-1022.
[14] Z.G. Niu, D. Liu, J. Zuo, et al., Four new cyclometalated phenylisoquinoline-based ir(III) complexes: syntheses, structures, properties and
DFT calculations, Inorg. Chem. Commun. 43 (2014) 146-150.
[15] CrysAlisPro Version 1.171.36.21. (2012). Agilent Technologies Inc. Santa Clara, CA, USA.
[16] G.M. Sheldrick, A short history of shelx. acta crystallogr a64, Acta Cryst. A64 (2008) 112-122.
[17] O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, et al., Olex2 : a complete structure solution, refinement and analysis program, J. Appl. Cryst.
42 (2009) 339-341.
[18] A.L. Spek, Single-crystal structure validation with the program platon, J. Appl. Crystallogr. 36 (2003) 7-13.
[19] P.v.d. Sluis, A.L. Spek, Bypass: an effective method for the refinement of crystal structures containing disordered solvent regions, Acta
Crystallogr. A46 (1990) 194-201.
[20] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al.,, Gaussian 09, Revision A.01, Gaussian, Inc. Wallingford, CT, (2009).
[21] C. Lee, W. Yang, R.G. Parr, Development of the colle-salvetti correlation-energy formula into a functional of the electron density, Phys.
Rev. B 37 (1988) 785-789.
[22] B. Miehlich, A. Savin, H. Stoll, et al., Results obtained with the correlation energy density functionals of becke and lee, yang and parr,
Chem. Phys. Lett. 157 (1989) 200-206.
[23] A.D. Becke, Density-functional thermochemistry. III. the role of exact exchange, J. Chem. Phys. 98 (1993) 5648-5652.
[24] M. Cossi, N. Rega, G. Scalmani, et al., Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation
model, J. Comput. Chem. 24 (2003) 669-681.
[25] J. Tomasi, B. Mennucci, R. Cammi, Quantum mechanical continuum solvation models, Chem. Rev. 105 (2005) 2999-3093.
[26] A. Juris, V. Balzani, F. Barigelletti, et al., Ru(II) polypyridine complexes: photophysics, photochemistry, electrochemistry, and
chemiluminescence, Coord. Chem. Rev. 84 (1988) 85-227.
[27] M. Frank, M. Nieger, F. Vögtle, et al., Dinuclear RuII and/or OsII complexes of bis, Inorg. Chim. Acta. 242 (1996) 281-291.
[28] K.A. King, P.J. Spellane, R.J. Watts, Excited-state properties of a triply ortho-metalated iridium(III) complex, J. Am. Chem. Soc. 107
(1985) 1431-1432.
[29] S. Kammer, I. Starke, A. Pietrucha, et al., 1,12-diazaperylene and 2,11-dialkylated-1,12, Dalton Trans 41 (2012) 10219-10227.
[30] M. Bandini, M. Bianchi, G. Valenti, et al., Electrochemiluminescent functionalizable cyclometalated thiophene-based iridium(III)
complexes, Inorg. Chem. 49 (2010) 1439-1448.
[31] S.K. Leung, K.Y. Kwok, K.Y. Zhang, et al., Design of luminescent biotinylation reagents derived from cyclometalated iridium(III) and
rhodium(III) bis(pyridylbenzaldehyde) complexes, Inorg. Chem. 49 (2010) 4984-4995.
[32] T. Hofbeck, H. Yersin, The triplet state of fac-Ir(ppy)3, Inorg. Chem. 49 (2010) 9290-9299.
[33] Q.L. Xu, C.C. Wang, T.Y. Li, et al., Syntheses, photoluminescence, and electroluminescence of a series of iridium complexes with
trifluoromethyl-substituted 2-phenylpyridine as the main ligands and tetraphenylimidodiphosphinate as the ancillary ligand, Inorg. Chem.
52 (2013) 4916-4925.
[34] M. Tavasli, T.N. Moore, Y.H. Zheng, et al., Colour tuning from green to red by substituent effects in phosphorescent tris-cyclometalated
iridium(III) complexes of carbazole-based ligands: synthetic, photophysical, computational and high efficiency OLED studies, J. Mater.
Chem. 22 (2012) 6419-6428.
[35] K.R.J. Thomas, M. Velusamy, J.T. Lin, et al., Efficient red-emitting cyclometalated iridium(III) complexes containing lepidine-based
ligands, Inorg. Chem. 44 (2005) 5677-5685.
[36] M.S. Lowry, W.R. Hudson, R.A. Jr. Pascal, et al., Accelerated luminophore discovery through combinatorial synthesis, J. Am. Chem.
Soc. 126 (2004) 14129-14135.
[37] Q. Zhao, S.J. Liu, M. Shi, et al., Series of new cationic iridium(III) complexes with tunable emission wavelength and excited state
properties: structures, theoretical calculations, and photophysical and electrochemical properties, Inorg. Chem. 45 (2006) 6152-6160.
Page 8 of 8