Angewandte
Chemie
T. Shimoboji, C. Long, A. Chilkoti, G. Chen, J. H. Harris, A. S.
amount of structured water that solvates around NIPAM
groups can be released upon the transition, thus yielding a
large transition enthalpy. However, for the NIPAM-termi-
nated dendrimers, the low conformational freedom that arises
from their highly branched structure might cause dense
packing of NIPAM groups in the periphery. Such a situation
should lead to inefficient hydration around NIPAM groups
below the LCST and inefficient dehydration of the NIPAM
groups above the LCST, thereby resulting in the extremely
small transition enthalpy.
Hoffman, Nature 1995, 378, 472 – 474; c) K. Kono, Adv. Drug
Delivery Rev. 2001, 53, 307 – 319; d) K. Nishida, M. Yamato, Y.
Hayashida, K. Watanabe, K. Yamamoto, E. Adachi, S. Nagai, A.
Kikuchi, N. Maeda, H. Watanabe, T. Okano, Y. Tano, N. Engl. J.
Med. 2004, 351, 1187 – 1196; e) A. S. Hoffman, Clin. Chem. 2000,
46, 1478 – 1486.
[2] M. Heskins, J. E. Guillet, J. Macromol. Sci. Chem. A 1968, 2,
1441 – 1455.
[3] H. G. Schild, Prog. Polym. Sci. 1992, 17, 163 – 249.
[4] Y. Haba, A. Harada, T. Takagishi, K. Kono, J. Am. Chem. Soc.
2004, 126, 1276 – 12761.
In conclusion, we have demonstrated that marked differ-
ences exist in transition enthalpy, hydrophobicity, and sensi-
tivity to urea between NIPAM-bearing dendrimers and linear
polymers, which arise from their structural features. The
thermosensitive dendrimers could undergo a sharp transition
by dehydration of the peripheral moiety without a large
conformational change of the whole molecule. Such proper-
ties, as well as the globular shape of the thermosensitive
dendrimers, might be attractive for their use as intelligent
nanocapsules for drug delivery and catalysis. The findings
obtained through this study increase the understanding of
thermosensitive polymers and expand their range of applica-
tion.
[5] a) K. L. Wooley, J. M. FrØchet, C. J. Hawker, Polymer 1994, 35,
4489 – 4495; b) T. H. Mourey, S. R. Turner, M. Rubinstein,
J. M. J. FrØchet, Macromolecules 1992, 25, 2401 – 2406; c) R.
Haag, J. F. StaubØ, A. Sunder, H. Frey, A. Hebel, Macromole-
cules 2000, 33, 8158 – 8166.
[6] a) C. Kojima, Y. Haba, K. Kono, T. Takagishi, Macromolecules
2003, 36, 2183 – 2186; b) Y. Haba, A. Harada, T. Takagishi, K.
Kono, Polymer 2005, 46, 1813 – 1820.
[7] Y. Haba, C. Kojima, A. Harada, K. Kono, Macromolecules 2006,
39, 7451 – 7453.
[8] a) L. D. Taylor, L. D. Cerankowski, J. Polym. Sci. Polym. Chem.
Ed. 1975, 13, 2551 – 2570; b) H. G. Schild, D. A. Tirrell, J. Phys.
Chem. 1990, 94, 4352 – 4356; c) E. I. Tiktopulo, V. E. Bychkova,
J. Ricka, O. B. Ptitsyn, Macromolecules 1994, 27, 2879 – 2882.
[9] H. Feil, Y. H. Bae, J. Feijen, S. W. Kim, Macromolecules 1993, 26,
2496 – 2500.
[10] K. Kalyanasundaran, J. K. Thomas, J. Phys. Chem. 1977, 81,
2176 – 2180.
[11] H. G. Schild, D. A. Tirrell, Langmuir 1991, 7, 1319 – 1324.
[12] a) W. Bruning, A. Holtzer, J. Am. Chem. Soc. 1961, 83, 4865 –
4866; b) R. A. Kuharski, P. J. Rossky, J. Am. Chem. Soc. 1984,
106, 5794 – 5800.
Received: August 16, 2006
Revised: October 4, 2006
Published online: November 24, 2006
Keywords: dendrimers · isopropylacrylamide ·
.
lower critical solution temperature · polymers · thermodynamics
[13] Y. Fang, J. C. Qiang, D. D. Hu, M. Z. Wang, Y. L. Cui, Colloid
Polym. Sci. 2001, 279, 14 – 21.
[1] a) R. Yoshida, K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y.
Sakurai, T. Okano, Nature 1995, 374, 240 – 242; b) P. S. Stayton,
Angew. Chem. Int. Ed. 2007, 46, 234 –237
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
237