energy transition appears more polarised to the quinoxaline.
The THEXI-state appears to have an electronic configuration
in which the acceptor orbital is predominantly quinoxaline in
nature. Quantum chemical calculations suggest the inter-ring
bonds connecting the pyridyl to quinoxaline rings are shortened
to differing extents, depending on the flattening of the ligand.
This offers an explanation for the observation of an unshifted ν9
mode in the ESRR spectra.
ohio-state.edu/~rmccreer/shift.html. Methods for correcting Raman
intensty/intensty.html. The Raman spectrum of cyclohexane
obtained from our instrument was compared to literature values and
corrected where appropriate. This correction factor was applied to
the GSRR spectrum of 4 at 632.8 nm excitation.
15 PC SPARTAN Plus version 1.5, Wavefunction, Inc., 18401 Von
Karman Ave., Suite 370, Irvine, CA 92612, 1998.
16 M. R. Waterland, K. C. Gordon and A. K. Burrel, manuscript in
preparation.
17 D. J. Casadonte, Jr. and D. R. McMillin, J. Am. Chem. Soc., 1987,
109, 331.
18 K. C. Gordon, A. H. R. Al-Obaidi, P. M. Jayaweera, J. J. McGarvey,
J. F. Malone and S. E. J. Bell, J. Chem. Soc., Dalton Trans., 1996,
1591.
19 F. R. Dollish, W. G. Fateley and F. F. Bentley, Characteristic Raman
Frequencies of Organic Compounds, Wiley, New York, 1974.
20 J. B. Cooper, D. B. MacQueen, J. D. Petersen and D. W. Wertz,
Inorg. Chem., 1990, 29, 3701.
21 J. R. Schoonover, P. Chen, W. D. Bates, R. B. Dyer and T. J. Meyer,
Inorg. Chem., 1994, 33, 793; R. A. McNichol, J. J. McGarvey,
A. H. R. Al-Obaidi, S. E. J. Bell, P. M. Jayaweera and C. G. Coates,
J. Phys. Chem., 1995, 99, 12268.
22 D. P. Strommen, P. K. Mallick, G. D. Danzer, R. S. Lumpkin and
J. R. Kincaid, J. Phys. Chem., 1990, 94, 1357; P. K. Mallick, G. D.
Danzer, D. P. Strommen and J. R. Kincaid, J. Phys. Chem., 1988,
92, 5628.
23 T. J. Durnick and S. C. Wait, Jr. J. Mol. Spectrosc., 1972, 42, 211.
24 S. M. Scott, A. K. Burrell, P. A. Cocks and K. C. Gordon, J. Chem.
Soc., Dalton Trans., 1998, 3679; J. Sherborne, S. M. Scott and
K. C. Gordon, Inorg. Chim. Acta, 1997, 260, 199; J. Sherborne
and K. C. Gordon, Asian J. Spectrosc., 1998, 2, 137.
25 G. D. Danzer, J. A. Golus and J. R. Kincaid, J. Am. Chem. Soc.,
1993, 115, 8643.
26 K. M. Omberg, G. D. Smith, D. A. Kavaliunas, P. Chen, J. A.
Treadway, J. R. Schoonover, R. A. Palmer and T. J. Meyer, Inorg.
Chem., 1999, 38, 951; P. Chen, K. M. Omberg, D. A. Kavaliunas,
J. A. Treadway, R. A. Palmer and T. J. Meyer, Inorg. Chem., 1997,
36, 954.
Acknowledgements
Support from the New Zealand Lottery Commission and the
University of Otago Research Committee for the purchase of
the Raman spectrometer is gratefully acknowledged. M. R. W.
thanks the John Edmond postgraduate scholarship and the
Shirtcliffe fellowship for support for Ph.D. research and The
Royal Society of New Zealand for the award of a Beginning
Scientist Award. A. F. thanks the Alliance Group Postgraduate
Scholarship award.
References
1 M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrey-Baker,
E. Mueller, P. Liska, N. Vlachopoulos and M. Gratzel, J. Am. Chem.
Soc., 1993, 115, 6382; K. Kalyanasundaram and M. Gratzel, Coord.
Chem. Rev., 1998, 177, 347; J. E. Moser, P. Bonnote and M. Gratzel,
Coord. Chem. Rev., 1998, 177, 245; C. A. Bignozzi, J. R. Schoonover
and F. Scandola, Prog. Inorg. Chem., 1997, 44, 1.
2 V. Balzani, M. Gomez-Lopez and J. F. Stoddart, Acc. Chem. Res.,
1998, 31, 405; M. Venturi, S. Serroni, A. Juris, S. Campagna and
V. Balzani, Top. Curr. Chem., 1998, 197, 193; V. Balzani, S.
Campagna, G. Denti, A. Juris, S. Serroni and M. Venturi, Acc.
Chem. Res., 1998, 31, 26; R. Ziessel, M. Hissler, A. El-Ghayoury
and A. Harriman, Coord. Chem. Rev., 1998, 180, 1251; R. Ziessel
and A. Harriman, Coord. Chem. Rev., 1998, 171, 331; F. Scandola,
R. Argazzi, C. A. Bignozzi, C. Chiorboli, M. T. Indelli and M. A.
Rampi, in Supramolecular Chemistry, ed. V. Balzani and L. DeCola,
Kluwer Academic Publishers, Netherlands, 1992, p. 235; L. De Cola
and P. Belser, Coord. Chem. Rev., 1998, 177, 301; M. D. Ward, C. M.
White, F. Barigelletti, N. Armaroli, G. Calogero and L. Flamigni,
Coord. Chem. Rev., 1998, 171, 481.
3 M. K. Eggleston, D. R. McMillin, K. S. Koenig and A. J.
Pallenberg, Inorg. Chem., 1997, 36, 172; M. T. Miller, P. K. Gantzel
and T. B. Karpishin, J. Am. Chem. Soc., 1999, 121, 4292;
M. Ruthkosky, C. A. Kelly, M. C. Zaros and G. J. Meyer, J. Am.
Chem. Soc., 1997, 119, 12004.
4 J. H. Elias and R. S. Drago, Inorg. Chem., 1972, 11, 415; R. W
Callahan, G. M. Brown and T. J Meyer, Inorg. Chem., 1975, 14,
1443; C. Creutz, Prog. Inorg. Chem., 1983, 30, 1.
27 D. P. Strommen, J. Chem. Educ., 1992, 69, 803; R. J. H. Clark and
T. J. Dines, Angew. Chem., Int. Ed. Engl., 1986, 25, 131.
28 M. R. Waterland, T. J. Simpson, K. C. Gordon and A. K. Burrell,
J. Chem. Soc., Dalton Trans., 1998, 185.
29 P. G. Bradley, N. Kress, B. A. Hornberger, R. F. Dallinger and W. H.
Woodruff, J. Am. Chem. Soc., 1981, 103, 7441; P. A. Mabrouk and
M. S. Wrighton, Inorg. Chem., 1986, 25, 526; K. C. Gordon and J. J.
McGarvey, Chem. Phys. Lett., 1989, 162, 117.
30 At 2 mJ pulseϪ1 with a spot size of 300 µm, sample penetration of
2 mm and sample concentration of 1 × 10Ϫ2 mol LϪ1 the number
of molecules in the irradiated volume is less than 1015, the number of
photons per pulse is 4.5 × 1015.
31 K. C. Gordon and J. J. McGarvey, Chem. Phys. Lett., 1990, 173,
5 S.-Y. Lee and E. J. Heller, J. Chem. Phys., 1979, 71, 4777; D. J.
Tannor and E. J. Heller, J. Chem. Phys., 1982, 77, 202; E. J. Heller,
R. L. Sundberg and D. J. Tannor, J. Phys. Chem., 1982, 86, 1822.
6 A. B. Myers, Excited Electronic State Properties from Ground-State
Resonance Raman Intensities, in Laser Techniques in Chemistry, ed.
A. B. Myers and T. R. Rizzo, Wiley, New York, 1995.
443.
32 T. J. Simpson and K. C. Gordon, Inorg. Chem., 1995, 34, 6323.
33 G. Buntinx, O. Poizat and N. Leygue, J. Phys. Chem., 1995, 99, 2343.
34 J. I. Zink and K.-S. K. Shin, Adv. Photochem., 1991, 16, 119.
35 J. I. Zink and K.-S. K. Shin, Inorg. Chem., 1989, 28, 4358.
36 K. V. Goodwin, W. T. Pennington and J. D. Petersen, Acta Crys-
tallogr., Sect. C, 1990, 46, 898.
7 M. Tsuboi and A. Y. Hirakawa, Science, 1975, 188, 359.
8 S. K. Doorn and J. T. Hupp, J. Am. Chem. Soc., 1989, 111, 1142;
V. Petrov, J. T. Hupp, C. Mottley and L. C. Mann, J. Am. Chem.
Soc., 1994, 116, 2171.
37 N. H. Damrauer, B. T. Weldon and J. K. McCusker, J. Phys. Chem.
A, 1998, 102, 3382.
38 S. M. Scott, A. K. Burrell, P. A. Cocks and K. C. Gordon, J. Chem.
Soc., Dalton Trans., 1998, 3679; S. M. Scott, A. K. Burrell and K. C.
Gordon, J. Chem. Soc., Dalton Trans., 1998, 2873; S. M. Scott,
K. C. Gordon and A. K. Burrell, Inorg. Chem., 1996, 35, 2452.
39 Preliminary calculations on the radical anion reveal high values for
9 A. W. Adamson, J. Chem. Educ., 1983, 60, 797.
10 H. A. Goodwin and F. Lions, J. Am. Chem. Soc., 1959, 81, 6415.
11 V. W.-W. Yam and K. K.-W. Lo, J. Chem. Soc., Dalton Trans., 1995,
499.
12 D. B. Shriver and B. R. Dunn, Appl. Spectrosc., 1974, 28, 319.
13 R. P. Van Duyne and K. D. Parks, Chem. Phys. Lett., 1980, 76, 196;
C. A. Grant and J. L. Hardwick, J. Chem. Educ., 1997, 74, 318.
14 The ASTM subcommittee on Raman spectroscopy has adopted
eight materials as Raman shift standards (ASTM E 1840). The band
the spin expectation parameter; 〈S2〉 = 1.5201 (0/30-dpq Ϫ), 1.3936
(15/30-dpq Ϫ) and 0.8531 (30/30-dpq Ϫ). See ref. 38.
Paper a909121a
J. Chem. Soc., Dalton Trans., 2000, 121–127
127