Lithium Hexamethyldisilazide-Mediated Enolizations
A R T I C L E S
The E selectivity rises markedly with increasing quantities of
LiHMDS, approaching 110:1 at g2.0 equiv of LiHMDS per
ketone.
The dependencies of the E/Z selectivities on the equivalents
of LiHMDS could be construed as evidence of intervening
lithium enolate/LiHMDS mixed aggregates in a kinetically
Figure 1. E/Z selectivity (E-6:Z-6, eq 3) versus molarity (M) of LiHMDS
in samples containing 0.10 M ketone 5 and 1.2 M excess Et3N in toluene
at -78 °C.
9
,13–15
1
6
controlled enolization.
It is mathematically impossible,
however, for a 100:1 selectivity at 50% conversion (2.0 equiv
of base) to be reversed to a 1:2 selectivity at full conversion
9
established protocols (eq 3). The proportion of LiHMDS to
ketone proves to be the key determinant of stereochemistry
(1.0 equiv of base) without an intervening equilibration. Indeed,
when a reaction mixture resulting from a highly E-selective
enolization of ketone 5 is subsequently treated with cyclohexyl
ethyl ketone as a surrogate to consume the remaining LiHMDS
(
Figure 1). At low base loadings the enolization shows a modest
10–12
ZselectivityakintothatobservedforLiHMDS/THFmixtures.
(
eq 4), the E selectivity in the enolization of 5 is lost. Under no
(
6) (a) Chalk, A. J.; Hay, A. S. J. Polym. Sci., A 1969, 7, 691. (b) Carreira,
circumstance, however, is a regiochemical equilibration ob-
served.
E. M.; Du Bois, J. J. Am. Chem. Soc. 1995, 117, 8106. (c) Bartlett,
P. D.; Tauber, S. J.; Weber, W. D. J. Am. Chem. Soc. 1969, 91, 6362.
(
d) Fisher, J. W.; Trinkle, K. L. Tetrahedron Lett. 1994, 35, 2505. (e)
A limited survey of hindered trialkylamines and dialkyl ethers
Screttas, C. G.; Eastham, J. F. J. Am. Chem. Soc. 1965, 87, 3276. (f)
Goralski, P.; Legoff, D.; Chabanel, M. J. Organomet. Chem. 1993,
4
in toluene as the cosolvent afforded the E/Z selectivities listed
in Table 1. LiHMDS/Et3N affords the highest selectivities.
1
1
56, 1. (g) Hallden-Aberton, M.; Engelman, C.; Fraenkel, G. J. Org.
Chem. 1981, 46, 538. (h) Sanderson, R. D.; Roediger, A. H. A.;
Summers, G. J. Polym. Int. 1994, 35, 263. (i) Welch, F. J. J. Am.
Chem. Soc. 1960, 82, 6000. (j) Oliver, C. E.; Young, R. N.;
Brocklehurst, B. J. Photochem. Photobiol., A 1993, 70, 17. (k)
Streitwieser, A., Jr.; Cang, C. J.; Hollyhead, W. B.; Murdoch, J. R.
J. Am. Chem. Soc. 1972, 94, 5288. (l) Sanderson, R. D.; Costa, G.;
Summers, G. J.; Summers, C. A. Polymer 1999, 40, 5429. (m) Yu,
Y. S.; Jerome, R.; Fayt, R.; Teyssie, P. Macromolecules 1994, 27,
The selectivity reversal caused by decreasing the THF concen-
trations was noted by Xie and Wielgosh.
The generality of the E-selective enolization by LiHMDS/
Et3N was established by surveying the enolizations summarized
in Table 2. Results derived from LiHMDS/THF are included
for comparison. Although the selectivities were not optimized
12
5
957. Zgonnik, V. N.; Sergutin, V. M.; Kalninsh, K. K.; Lyubimova,
G. V.; Nikolaev, N. I. Bull. Acad. Sci. USSR 1977, 26, 709. (o)
Antkowiak, T. A.; Oberster, A. E.; Halasa, A. F.; Tate, D. P. J. Polym.
Sci., A 1972, 10, 1319. (p) Giese, H. H.; Habereder, T.; Knizek, J.;
N o¨ th, H.; Warchold, M. Eur. J. Inorg. Chem. 2001, 1195. (q) Doriat,
C.; Koeppe, R.; Baum, E.; Stoesser, G.; Koehnlein, H.; Schnoeckel,
H. Inorg. Chem. 2000, 39, 1534. (r) Chabanel, M.; Lucon, M.; Paoli,
D. J. Phys. Chem. 1981, 85, 1058. (s) Bernstein, M. P.; Collum, D. B.
J. Am. Chem. Soc. 1993, 115, 789. (t) Luitjes, H.; de Kanter, F. J. J.;
Schakel, M.; Schmitz, R. F.; Klumpp, G. W. J. Am. Chem. Soc. 1995,
(11) (a) Heathcock, C. H.; Buse, C. T.; Kleschick, W. A.; Pirrung, M. C.;
Sohn, J. E.; Lampe, J. J. Org. Chem. 1980, 45, 1066. (b) Ireland,
R. E.; Mueller, R. H.; Willard, A. K. J. Am. Chem. Soc. 1976, 98,
2868. (c) Evans, D. A.; Yang, M. G.; Dart, M. J.; Duffy, J. L.; Kim,
A. S. J. Am. Chem. Soc. 1995, 117, 9598. (d) McCarthy, P. A.;
Kageyama, M. J. Org. Chem. 1987, 52, 4681. (e) Davis, F. A.; Yang,
B. J. Am. Chem. Soc. 2005, 127, 8398. (f) Okabayashi, T.; Iida, A.;
Takai, K.; Nawate, Y.; Misaki, T.; Tanabe, Y. J. Org. Chem. 2007,
72, 8142. (g) Woltermann, C. J.; Hall, R. W.; Rathman, T. Pharma-
Chem 2003, 2, 4. (h) Fataftah, Z. A.; Kopka, I. E.; Rathke, M. W.
J. Am. Chem. Soc. 1980, 102, 3959. (i) Ireland, R. E.; Wipf, P.;
Armstrong, J. D., III J. Org. Chem. 1991, 56, 650.
117, 4179. (u) Wiedemann, S. H.; Ramıírez, A.; Collum, D. B. J. Am.
Chem. Soc. 2003, 125, 15893. (v) Also, see ref 4.
(
7) (a) Ireland, R. E.; Mueller, R. H. J. Am. Chem. Soc. 1972, 94, 5897.
(
b) Castro, A. M. M. Chem. ReV. 2004, 104, 2939. (c) Pereira, S.;
Srebnik, M. Aldrichimica Acta 1993, 26, 17. (d) The Claisen
Rearrangement: Methods and Applications; Hiersemann, M., Nubbe-
meyer, U. Eds.; Wiley: Weinheim, 2007. (e) Gilbert, J. C.; Yin, J.;
Fakhreddine, F. H.; Karpinski, M. L. Tetrahedron 2004, 60, 51. (f)
Chai, Y.; Hong, S.-p.; Lindsay, H. A.; McFarland, C.; McIntosh, M. C.
Tetrahedron 2002, 58, 2905. (g) Tsunoda, T.; Sakai, M.; Sasaki, O.;
Sako, Y.; Hondo, Y.; Ito, S. Tetrahedron Lett. 1992, 33, 1651. (h)
Trunoda, T.; Sasaki, O.; Ito, S. Tetrahedron Lett. 1990, 31, 727. (i)
Tsunoda, T.; Nishii, T.; Hoshizuka, M.; Yamasaki, C.; Suzuki, T.;
Ito, S. Tetrahedron Lett. 2000, 41, 7667. (j) Suh, Y. G.; Kin, S.-A.;
Jung, J.-K.; Shin, D.-Y.; Min, K.-H.; Koo, B.-A.; Kim, H.-S. Angew.
Chem., Int. Ed. Engl. 1999, 38, 3545. (k) Linstr o¨ m, U. M.; Somfai,
P. Chem.-Eur. J. 2001, 7, 94. (l) Linstr o¨ m, U. M.; Somfai, P. J. Am.
Chem. Soc. 1997, 119, 8385.
(12) Xie, L.; Wielgosh, M. Book of Abstracts, 219th ACS National Meeting,
San Francisco, CA, March 26-30, 2000, ORGN-196; American
Chemical Society: Washington, D.C., 2000.
(13) Galiano-Roth, A. S.; Kim, Y.-J.; Gilchrist, J. H.; Harrison, A. T.; Fuller,
D. J.; Collum, D. B. J. Am. Chem. Soc. 1991, 113, 5053.
(14) For leading references and discussions of mixed aggregation effects,
see:(a) Seebach, D. Angew. Chem., Int. Ed. Engl. 1988, 27, 1624. (b)
Tchoubar, B.; Loupy, A. Salt Effects in Organic and Organometallic
Chemistry; VCH: New York, 1992; Chapters 4, 5, and 7. (c) Briggs,
T. F.; Winemiller, M. D.; Xiang, B.; Collum, D. B. J. Org. Chem.
2001, 66, 6291. (d) Caub e` re, P. Chem. ReV. 1993, 93, 2317. (e)
Gossage, R. A.; Jastrzebski, J. T. B. H.; van Koten, G. Angew. Chem.,
Int. Ed. 2005, 44, 1448.
(15) (a) Kim, Y.-J.; Streitwieser, A. Org. Lett. 2002, 4, 573. (b) Sun, C. Z.;
Williard, P. G. J. Am. Chem. Soc. 2000, 122, 7829.
(
(
8) Stork, G.; Hudrlik, P. F. J. Am. Chem. Soc. 1968, 90, 4462.
9) Hall, P. L.; Gilchrist, J. H.; Collum, D. B. J. Am. Chem. Soc. 1991,
(16) The concentration of LiHMDS, although expressed in units of molarity,
refers to the concentration of the monomer unit (normality). Concen-
trations of the Et3N refer to the concentrations of the free (uncom-
plexed) amine rather than to the total unless stated otherwise.
1
13, 9571.
10) Masamune, S.; Imperiali, B.; Garvey, D. S. J. Am. Chem. Soc. 1982,
04, 5526.
(
1
J. AM. CHEM. SOC. 9 VOL. 130, NO. 27, 2008 8727