Angewandte
Chemie
12025 – 12029; c) S. O. Kelley, R. E. Holmlin, E. D. A. Stemp,
does not significantly influence the absorption and emission
properties of the molecules.
J. K. Barton, J. Am. Chem. Soc. 1997, 119, 9861– 9870; d) D. B.
Hall, S. O. Kelley, J. K. Barton, Biochemistry 1998, 37, 15933 –
15940; e) A. I. Kononov, E. B. Moroshkina, N. V. Tkachenko, H.
Lemmetyinen, J. Phys. Chem. B 2001, 105, 535 – 541; f) P. T.
Henderson, E. Boone, G. B. Schuster, Helv. Chim. Acta 2002, 85,
135 – 151.
Finally, the electron-donor properties of the artificial
phenanthridinium DNA base were elucidated by using
methyl viologen (MV) as a noncovalently bound electron
acceptor.[4] The redox potentials indicate that an electron can
be transferred from the excited state of ethidium to methyl
viologen.[18] The emission of DNA1 and DNA2 was quenched
significantly by MVas a result of this electron-transfer process
(Figure 3). This result shows clearly that the synthesized
[4] a) P. Fromherz, B. Rieger, J. Am. Chem. Soc. 1986, 108, 5361–
5362; b) S. J. Atherton, P. C. Beaumont, J. Phys. Chem. 1987, 91,
3993 – 3997; c) D. A. Dunn, V. H. Lin, I. E. Kochevar, Biochem-
istry 1992, 31, 11620 – 11625.
[5] S. O. Kelley, J. K. Barton, Chem. Biol. 1998, 5, 413 – 425.
[6] C. Wan, T. Fiebig, S. O. Kelley, C. R. Treadway, J. K. Barton,
A. H. Zewail, Proc. Natl. Acad. Sci. USA 1999, 96, 6014 – 6019.
[7] a) Oxidation: E(E*+/EC) = ca. 1.2 V, see ref. [5]. In DNA, gua-
+
nine has the lowest oxidation potential of the bases: E(dGC /
dG) ꢀ 1.3 V, see: S. Steenken, S. V. Jovanovic, J. Am. Chem. Soc.
1997, 119, 617 – 618; b) reduction: E(EC2+/E*+) ꢀ À0.5 V, see
ref. [4]. Cytosine/thymine have the lowest reduction potentials
in DNA: E(dT/dTCÀ) ꢀ E(dC/dCCÀ) ꢀ À1.2 V, see: S. Steenken,
J. P. Telo, H. M. Novais, L. P. Candeias, J. Am. Chem. Soc. 1992,
114, 4701– 4709.
[8] L. J. P. Latimer, J. S. Lee, J. Biol. Chem. 1991, 266, 13849 – 13851.
[9] J. Jortner, M. Bixon, T. Langenbacher, M. E. Michel-Beyerle,
Proc. Natl. Acad. Sci. USA 1998, 95, 12759 – 12765.
[10] N. Amann, H.-A. Wagenknecht, Tetrahedron Lett. 2003, 44,
1685 – 1690.
[11] A. V. Azhayev, M. L. Antopolsky, Tetrahedron 2001, 57, 4977 –
4986.
[12] N. Amann, H.-A. Wagenknecht, unpublished results.
Figure 3. Electron transfer experiments with DNA1 and DNA2. 12.5 mm
duplex, 10 mm Na/phosphate buffer, pH 7. Methyl viologen was added
in increasing amounts.
[13] Ethidium: e(260 nm) = 45200mÀ1 cmÀ1
, see: J. Pauluhn, A.
Naujok, H. W. Zimmermann, Z. Naturforsch. 1980, 35, 585 – 598.
[14] The corresponding phosphoramidite is commercially available
from Glen Research.
[15] a) M. J. Waring, J. Mol. Biol. 1965, 13, 269 – 282; b) J.-B. LePecq,
C. Paleotti, J. Mol. Biol. 1967, 27, 87 – 106; c) R. L. Letsinger,
M. E. Schott, J. Am. Chem. Soc. 1981, 103, 7394 – 7396.
[16] J. Olmsted, D. Kearns, Biochemistry 1977, 16, 3647 – 3654.
[17] G. Cosa, K.-S. Foscaneanu, J. R. N. McLean, J. P. McNamee, J. C.
Scaiano, Photochem. Photobiol. 2001, 73, 585 – 599.
[18] E(MV2+/MVC+) = À0.44 V, see: L. Michaelis, E. S. Hill, J. Am.
Chem. Soc. 1933, 55, 1481 – 1494.
phenanthridinium–DNA has the potential to allow spectro-
scopic investigation of electron transfer (not electron hop-
ping) in DNA. Use of this molecule will also make it possible
to compare the rate of reductive electron transfer with that of
oxidative hole transfer by using either methyl viologen or 7-
deazaguanine as the electron or hole acceptor, respectively.
[19] R. Huber, N. Amann, H.-A. Wagenknecht, J. Org. Chem. 2004,
69, 744 – 751.
Experimental Section
The details of the synthesis of DNA building block 1 will be published
separately.[19] Experimental details of the preparation and spectro-
scopic characterization of DNA1 and DNA2 are described in the
Supporting Information.
Received: October 27, 2003 [Z53153]
Keywords: DNA · electron transfer · ethidium ion · fluorescence
.
spectroscopy · oligonucleotides
[1] a) A. R. Morgan, J. S. Lee, D. E. Pulleyblank, N. L. Murray,
D. H. Evans, Nucleic Acids Res. 1979, 7, 547 – 569; b) A. R.
Morgan, D. H. Evans, J. S. Lee, D. E. Pulleyblank, Nucleic Acids
Res. 1979, 7, 571– 594.
[2] a) J. N. A. Tettey, G. G. Skellern, M. H. Grant, J. M. Midgley, J.
Pharm. Biomed. Anal. 1999, 21, 1– 7; b) J. N. A. Tettey, G. G.
Skellern, J. M. Midgley, M. H. Grant, A. R. Pitt, Chem.-Biol.
Interact. 1999, 123, 105 – 115.
[3] a) A. M. Brun, A. Harriman, J. Am. Chem. Soc. 1992, 114, 3656 –
3660; b) S. J. Atherton, P. C. Beaumont, J. Phys. Chem. 1995, 99,
Angew. Chem. Int. Ed. 2004, 43, 1845 –1847
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1847