ACS Catalysis
squalane) with in-line GC detection equipment. The pre- and
Research Article
(
beamtime (SP8071-8). The RCaH are also acknowledged for
postcatalysis solutions were characterized using UV−vis,
use of facilities and support of their staff.
EXAFS, and XANES spectroscopy; microscopy (TEM); and,
1
where possible, by H NMR spectroscopy. The combined
REFERENCES
■
techniques indicate that the precatalysis mixture contains small
(1) (a) MacDowell, N.; Florin, N.; Buchard, A.; Hallett, J.; Galindo,
A.; Jackson, G.; Adjiman, C. S.; Williams, C. K.; Shah, N.; Fennell, P.
Energy Environ. Sci. 2010, 3, 1645−1669. (b) Kember, M. R.; Buchard,
A.; Williams, C. K. Chem. Commun. 2011, 47, 141−163. (c) Aresta, M.
Carbon Dioxide as a Chemical Feedstock. Wiley-VCH: Weinheim, 2010.
d) Darensbourg, D. J. Inorg. Chem. 2010, 49, 10765−10780.
e) Peters, M.; Kohler, B.; Kuckshinrichs, W.; Leitner, W.;
ller, T. E. ChemSusChem 2011, 4, 1216−1240.
f) Wesselbaum, S.; vom Stein, T.; Klankermayer, J.; Leitner, W.
(1−4 nm) copper nanoparticles and organometallic zinc
complexes (diethyl zinc and ethyl zinc stearate cluster). On
the other hand, after catalysis, the organozinc reagents were
hydrolyzed to produce zinc oxide nanoparticles and the copper
nanoparticles of sizes <10 nm. These spectroscopic findings are
in line with ethane evolution (consistent with ethyl−zinc bond
hydrolysis) during the initial phase of catalysis. The catalyst
synthesis method was easily tuned, and the influence of the
relative loadings of ZnO/Cu, the nature of the precursor
compounds, and the effect of overall catalyst concentration
were reported.
(
(
̈
Markewitz, P.; Mu
(
̈
Angew. Chem., Int. Ed. 2012, 51, 7499−7502. (g) Balaraman, E.;
Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Nat. Chem.
2011, 3, 609−614. (h) Menard, G.; Stephan, D. W. J. Am. Chem. Soc.
2010, 132, 1796−1797.
The best systems, which were formed using equimolar ratios
of diethyl zinc/bis(stearate) copper in dry toluene gave
activities for methanol production equivalent to those observed
with a commercially available heterogeneous catalyst bench-
mark (mostly comprising ZnO, CuO, and Al O mixtures).
(2) Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazabal, G. O.;
Perez-Ramirez, J. Energy Environ. Sci. 2013, 6, 3112−3135.
(
3) (a) Olah, G. A. Angew. Chem., Int. Ed. 2013, 52, 104−107.
(
b) Pontzen, F.; Liebner, W.; Gronemann, V.; Rothaemel, M.; Ahlers,
B. Catal. Today 2011, 171, 242−250. (c) Olah, G. A.; Goeppert, A.;
2
3
Prakash, G. K. S. J. Org. Chem. 2009, 74, 487−498.
(
(
1
Thus, it is clear that formation of the copper nanoparticles, by
reduction with diethyl zinc and subsequent in situ hydrolysis of
the organozinc complexes results in a highly active and selective
catalyst mixture. It is tentatively proposed that this increased
activity may result from a preferential formation of ZnO/Cu
interfaces using the in situ methodology (as compared with
mixing together discrete solutions of nanoparticles). The facility
with which variables can be changed as well as the ease of
catalyst preparation make this route a rather attractive method
for further optimization and investigation. In contrast to other
4) Yang, C.-J.; Jackson, R. B. Energy Policy 2012, 41, 878−884.
̈
5) (a) Strunk, J.; Kahler, K.; Xia, X.; Muhler, M. Surf. Sci. 2009, 603,
776−1783. (b) Baltes, C.; Vukojevic, S.; Schuth, F. J. Catal. 2008,
258, 334−344. (c) Behrens, M.; Studt, F.; Kasatkin, I.; Kuhl, S.;
Havecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.;
Kniep, B. L.; Tovar, M.; Fischer, R. W.; Norskov, J. K.; Schlogl, R.
Science 2012, 336, 893−897. (d) Hansen, P. L.; Wagner, J. B.; Helveg,
S.; Rostrup-Nielsen, J. R.; Clausen, B. S.; Topsoe, H. Science 2002, 295,
2
053−2055. (e) Fichtl, M. B.; Schumann, J.; Kasatkin, I.; Jacobsen, N.;
Behrens, M.; Schlogl, R.; Muhler, M.; Hinrichsen, O. Angew. Chem.,
Int. Ed. 2014, 53, 7043−7047.
6) (a) Saito, M.; Murata, K. Catal. Surv. Asia 2004, 8, 285−294.
b) Saito, M.; Takeuchi, M.; Fujitani, T.; Toyir, J.; Luo, S. C.; Wu, J.
G.; Mabuse, H.; Ushikoshi, K.; Mori, K.; Watanabe, T. Appl.
Organomet. Chem. 2000, 14, 763−772. (c) Wang, W.; Wang, S. P.;
Ma, X. B.; Gong, J. L. Chem. Soc. Rev. 2011, 40, 3703−3727. (d) Wu, J.
G.; Saito, M.; Takeuchi, M.; Watanabe, T. Appl. Catal., A 2001, 218,
̈
(
high temperature) methods to prepare Cu/ZnO particles, this
(
synthesis operates at room temperature in organic solvents and
yields highly reproducible, small nanoparticles surface-capped
with organic ligands. Given the synthetic simplicity and
potential to form nonequilibrium products, this method may
well be applicable to a range of different catalytic systems,
including those used for the production of methanol from
synthesis gas.
(
2
3
35−240. (e) Li, C.; Yuan, X.; Fujimoto, K. Appl. Catal., A 2014, 469,
06−311. (f) Natesakhawat, S.; Lekse, J. W.; Baltrus, J. P.; Ohodnicki,
P. R.; Howard, B. H.; Deng, X. Y.; Matranga, C. ACS Catal. 2012, 2,
1
667−1676. (g) Saito, M.; Fujitani, T.; Takeuchi, M.; Watanabe, T.
ASSOCIATED CONTENT
Supporting Information
■
Appl. Catal., A 1996, 138, 311−318. (h) Fisher, I. A.; Bell, A. T. J.
Catal. 1997, 172, 222−237. (i) Liu, X. M.; Lu, G. Q.; Yan, Z. F.;
Beltramini, J. Ind. Eng. Chem. Res. 2003, 42, 6518−6530. (j) Fujita, S.;
Usui, M.; Ito, H.; Takezawa, N. J. Catal. 1995, 157, 403−413.
*
S
(k) Koeppel, R. A.; Baiker, A.; Wokaun, A. Appl. Catal., A 1992, 84,
Experimental details, 15 figures, 4 tables of results;
additional references (PDF)
7
7−102. (l) Dutta, G.; Sokol, A. A.; Catlow, C. R. A.; Keal, T. W.;
Sherwood, P. ChemPhysChem 2012, 13, 3453−3456. (m) Grabow, L.
C.; Mavrikakis, M. ACS Catal. 2011, 1, 365−384.
AUTHOR INFORMATION
(7) Behrens, M.; Schloegl, R. Z. Anorg. Allg. Chem. 2013, 639, 2683−
■
2
695.
(
8) Weiss, R.; Guo, Y. Z.; Vukojevic, S.; Khodeir, L.; Boese, R.;
Schuth, F.; Muhler, M.; Epple, M. Eur. J. Inorg. Chem. 2006, 1796−
802.
9) (a) Liao, F. L.; Huang, Y. Q.; Ge, J. W.; Zheng, W. R.; Tedsree,
K.; Collier, P.; Hong, X. L.; Tsang, S. C. Angew. Chem., Int. Ed. 2011,
0, 2162−2165. (b) Liao, F. L.; Zeng, Z. Y.; Eley, C.; Lu, Q.; Hong, X.
L.; Tsang, S. C. E. Angew. Chem., Int. Ed. 2012, 51, 5832−5836.
c) Zhou, X. W.; Qu, J.; Xu, F.; Hu, J. P.; Foord, J. S.; Zeng, Z. Y.;
*
*
1
(
Notes
The authors declare no competing financial interest.
5
ACKNOWLEDGMENTS
■
(
At Imperial College London, the EPSRC are acknowledged for
funding (EP/H046380, EP/K035274/1), as well as the Energy
Futures Lab, the Alan Howard Studentship (Y.W.), and the
EPSRC Centre for Doctoral Training in Plastic Electronics
Hong, X. L.; Tsang, S. C. E. Chem. Commun. 2013, 49, 1747−1749.
(
(
10) Lee, S. G.; Sardesai, A. Top. Catal. 2005, 32, 197−207.
11) (a) Hambrock, J.; Rabe, S.; Merz, K.; Birkner, A.; Wohlfart, A.;
Fischer, R. A.; Driess, M. J. Mater. Chem. 2003, 13, 1731−1736.
(
M.A.). Dr Peter Wells and Emma Gibson acknowledge
(b) Hambrock, J.; Schroter, M. K.; Birkner, A.; Woll, C.; Fischer, R. A.
EPSRC funding for the XAFS measurements (EP/I019693/1,
EP/K014714/1) and Diamond Light Source for provision of
Chem. Mater. 2003, 15, 4217−4222. (c) Lu, L. H.; Wohlfart, A.; Parala,
H.; Birkner, A.; Fischer, R. A. Chem. Commun. 2003, 40−41.
2
901
ACS Catal. 2015, 5, 2895−2902