Please d oC hn eo mt Ca do mj u ms t margins
Page 4 of 5
COMMUNICATION
Journal Name
2 E. M. Alayon, M. Nachtegaal, M. Ranocchiari and J. A. van
1
1
1
converge to approximately 2 Cu(I) formed per methanol. This
indicates, at least mechanistically, the conversion of methane
to methanol under the isothermal and conventional procedures
Bokhoven, Chem. Commun., 2012, 48, 404–406.
DOI: 10.1039/C9CC05659A
3 M. J. Wulfers, S. Teketel, B. Ipek and R. F. Lobo, Chem.
Commun., 2015, 51, 4447–4450.
4 S. Grundner, M. A. C. Markovits, G. Li, M. Tromp, E. A. Pidko,
E. J. M. Hensen, A. Jentys, M. Sanchez-Sanchez and J. A.
Lercher, Nat. Commun., 2015, 6, 7546.
3
4
are similar. One may speculate that a precursor species to the
generally assumed active site formed during the high-
temperature activation is active in the case of isothermal and
low temperature operation. However, water is not completely
removed during activation of isothermal procedure, leaving
partially water-poisoned active sites (Figure S7).
1
5 S. E. Bozbag, E. M. C. Alayon, J. Pecháček, M. Nachtegaal, M.
Ranocchiari and J. A. van Bokhoven, Catal. Sci. Technol.,
2
016, 6, 5011–5022.
1
1
6 M. B. Park, S. H. Ahn, A. Mansouri, M. Ranocchiari and J. A.
van Bokhoven, ChemCatChem, 2017, 9, 3705–3713.
By expanding the database of zeolites tested for the
conversion of methane to methanol under isothermal
conditions, there is a significant overlap between zeolites (MAZ-
B, MOR10, MOR6.5, CHA, and FER) that are active for both the
conventional, high temperature and isothermal stepwise
approaches to the selective activation of methane. Conversely,
there are also zeolites (OFF) that are active in the isothermal but
not the conventional procedure, showing that the structure-
activity relationships observed in the conventional procedure
cannot be absolutely applied to the isothermal procedure
across all zeolite types. However, there is similarity between the
two methods in respect to the mechanism, which is a 2-electron
reduction process, and the selection of the parent zeolites
morphology can affect the final yield.
7 D. Pappas, E. Borfecchia, M. Dyballa, K. A. Lomachenko, A.
Martini, G. Berlier, B. Arstad, C. Lamberti, S. Bordiga, U.
Olsbye, S. Svelle and P. Beato, ChemCatChem, 2019, 10, 621–
6
27.
1
1
8 J. S. Woertink, P. J. Smeets, M. H. Groothaert, M. A. Vance, B.
F. Sels, R. A. Schoonheydt and E. I. Solomon, Proc. Natl. Acad.
Sci., 2009, 106, 18908–18913.
9 P. Vanelderen, J. Vancauwenbergh, M. L. Tsai, R. G. Hadt, E. I.
Solomon, R. A. Schoonheydt and B. F. Sels, ChemPhysChem,
2
014, 15, 91–99.
2
2
2
0 B. E. R. Snyder, P. Vanelderen, R. A. Schoonheydt, B. F. Sels
and E. I. Solomon, J. Am. Chem. Soc., 2018, 140, 9236–9243.
1 V. L. Sushkevich, D. Palagin, M. Ranocchiari, J. A. van
Bokhoven, Science, 2017, 356, 523.
2 J. Meyet, K. Searles, M. A. Newton, M. Wörle, A. P. van Bavel,
A. D. Horton, J. A. van Bokhoven and C. Coperet, Angew.
Chem. Int. Ed., 2019, 58, 9841-9845.
Of the screened zeolites, MAZ-B showed superior
performance, and by further investigating MAZ-B under low- 23 D. Palagin, A. J. Knorpp, A. B. Pinar, M. Ranocchiari and J. A.
van Bokhoven, Nanoscale, 2017, 9, 1144–1153.
temperature isothermal conditions, conversions of methane to
methanol at levels that are commensurate with the
conventional high temperature activation have been achieved.
Furthermore, these levels come without the significant penalty
of very large swings in temperature required by the latter
method.
2
4 E. M. C. Alayon, M. Nachtegaal, A. Bodi, M. Ranocchiari and
J. A. van Bokhoven, Phys. Chem. Chem. Phys., 2015, 17,
7
681–7693.
2
5 P. Tomkins, A. Mansouri, S. E. Bozbag, F. Krumeich, M. B.
Park, E. M. C. Alayon, M. Ranocchiari and J. A. van Bokhoven,
Angew. Chemie - Int. Ed., 2016, 55, 5557–5561.
2
2
6 P. Tomkins, M. Ranocchiari and J. A. van Bokhoven, Acc.
Chem. Res., 2017, 50, 418–425.
7 D. K. Pappas, A. Martini, M. Dyballa, K. Kvande, S. Teketel, K.
A. Lomachenko, R. Baran, P. Glatzel, B. Arstad, G. Berlier, C.
Lamberti, S. Bordiga, U. Olsbye, S. Svelle, P. Beato and E.
Borfecchia, J. Am. Chem. Soc., 2018, 140, 15270–15278.
8 V. L. Sushkevich and J. A. van Bokhoven, ACS Catal., 2019, 9,
Conflicts of interest
There are no conflicts to declare.
2
2
6
293–6304.
Notes and references
9 D. K. Pappas, E. Borfecchia, M. Dyballa, I. A. Pankin, K. A.
Lomachenko, A. Martini, M. Signorile, S. Teketel, B. Arstad,
G. Berlier, C. Lamberti, S. Bordiga, U. Olsbye, K. P. Lillerud, S.
Svelle and P. Beato, J. Am. Chem. Soc., 2017, 139, 14961.
0 A. J. Knorpp, A. B. Pinar, M. Newton, V. Sushkevich and J. A.
van Bokhoven, ChemCatChem, 2018, 10, 5593–5596.
1 C. Baerlocher and L. B. McCusker, Database of Zeolite
Structures:, http://www.iza-structure.org/databases/.
2 A. J. Knorpp, M. A. Newton, V. L. Sushkevich, P. P.
Zimmermann, A. B. Pinar and J. A. van Bokhoven, Catal. Sci.
Technol., 2019, 9, 2806–2811.
1
T. A. Brzustowski, Prog. Energy Combust. Sci., 1976, 2, 129–
41
1
3
3
3
2
3
G. A. Olah, Angew. Chemie - Int. Ed., 2005, 44, 2636–2639.
G. C. Chinchen, P. J. Denny, J. R. Jennings, K. C. Waugh and P.
Group, Appl. Catal., 1988, 36, 1–65.
4
5
6
7
8
9
1
1
M. H. Groothaert, P. J. Smeets, B. F. Sels, P. A. Jacobs and R.
A. Schoonheydt, J. Am. Chem. Soc., 2005, 127, 1394–1395.
J.-P. Lange, K. P. De Jong, J. Ansorge and P. J. A. Tijm, in
Studies in Surface Science and Catalysis, 1997, 107, 81–86.
M. Ahlquist, R. J. Nielsen, R. A. Periana and W. A. Goddard, J.
Am. Chem. Soc., 2009, 131, 17110–17115.
M. Ravi, M. Ranocchiari and J. A. van Bokhoven, Angew.
Chemie - Int. Ed., 2017, 56, 16464–16483.
A. A. Latimer, A. Kakekhani, A. R. Kulkarni and J. K. Nørskov,
ACS Catal., 2018, 8, 6894–6907.
J.-P. Lange, V. L. Sushkevich, A. J. Knorpp and J. A. van
Bokhoven, Ind. Eng. Chem. Res., 2019, 58, 8674–8680.
0 N. V. Beznis, B. M. Weckhuysen and J. H. Bitter, Catal.
Letters, 2010, 138, 14–22.
1 P. Vanelderen, R. G. Hadt, P. J. Smeets, E. I. Solomon, R. A.
Schoonheydt and B. F. Sels, J. Catal., 2011, 284, 157–154.
3
3
3 A. J. Knorpp, M. A. Newton, A. B. Pinar and J. A. van
Bokhoven, Ind. Eng. Chem. Res., 2018, 57, 12036–12039.
4 M. A. Newton, A. J. Knorpp, A. B. Pinar, V. L. Sushkevich, D.
Palagin and J. A. van Bokhoven, J. Am. Chem. Soc., 2018, 140,
1
0090–10093.
3
3
5 G. Brezicki, J. D. Kammert, T. B. Gunnoe, C. Paolucci and R. J.
Davis, ACS Catal., 2019, 9, 5308–5319.
6 C. Paolucci, I. Khurana, A. A. Parekh, S. Li, A. J. Shih, H. Li, J. R.
Di Iorio, J. D. Albarracin-caballero, A. Yezerets, J. T. Miller, W.
N. Delgass, F. H. Ribeiro, W. F. Schneider and R. Gounder,
Science, 2017, 357, 898–903.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins