ORGANIC
LETTERS
2011
Vol. 13, No. 16
4244–4247
Thermal [2 þ 2] Cycloaddition of
Morpholinoenamines with C60 via a Single
Electron Transfer
Tsubasa Mikie, Haruyasu Asahara, Kazuaki Nagao, Naohiko Ikuma, Ken Kokubo, and
Takumi Oshima*
Division of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1,
Yamadaoka, Suita, Osaka 565-0871, Japan
Received June 14, 2011
ABSTRACT
The thermal reaction of C60 with five- and six-membered morpholinocycloalkenes in refluxing toluene exclusively gave the [2 þ 2] cycloadducts in
high yields. However, a seven-membered homologue sluggishly reacted with C60 because of the increasing steric hindrance. This cycloaddition
reaction is likely to proceed via a single electron transfer (SET), a radical-coupling, and subsequent ion cyclization rather than the prior proton
transfer between the radical ions.
Cycloaddition reactions of fullerenes at the [6,6] con-
junct double bond are valuable methods for chemical
modification and have attracted continuous attention in
view of the synthesis of fullerene derivatives and new
materials.1 Especially, a vast amount of study has been
made of the thermally allowed [2 þ 4] and [2 þ 3] concerted
reactions such as DielsꢀAlder2 and 1,3-dipolar cyclo-
additions.3 In these reactions, fullerenes behave as electron-
poor 2π components due to the highly conjugated low
lying LUMO. In contrast to the photochemical [2 þ 2]
cycloadditions,4 however, the thermal [2 þ 2] cycloaddi-
tion of fullerenes is very scarcely known in fullerene
chemistry as found in some extreme cases such as the
(1) (a) Hirsch, A. The Chemistry of Fullerenes; Wiley-VCH: Weinheim,
Germany, 2005. (b) Fullerrenes: From Synthesis to Optoelectronic Proper-
ties; Guldi, D. M., Martin, N., Eds.; Kluwer Academic Publications:
Dordrecht, The Netherlands, 2002. (c) Taylor, R. Lecture Notes on Fullerene
Chemistry: A Handbook for Chemist; Imperial College Press; London, U.
K., 1999. (d) Langa, F.; Nierengarten, J.-F., Eds. Fullerenes. Principles and
Applications. RSC: Cambrigde, U.K., 2007. (e) Taylor, R.; Walton, D. R. M.
Nature 1993, 363, 685–693. (f) Hirsch, A. Top. Curr. Chem. 1999, 199
1–65. (g) Diederich, F.; Thilgen, C. Top. Curr. Chem. 1999, 199, 135–171.
(h) Prato, M. Top. Curr. Chem. 1999, 199, 173–187. (i) Nakamura, E.;
Isobe, H. Acc. Chem. Res. 2003, 36, 807–815. (j) Guldi, D. M.; Zerbetto,
F.; Georgakilas, V.; Prato, M. Acc. Chem. Res. 2005, 38, 38–43.
(2) (a) Pang, L. S. K.; Wilson, M. A. J. Phys. Chem. 1993, 97, 6761–
6763. (b) Mestres, J.; Duran, M.; Sola, M. J. Phys. Chem. 1996, 100,
7449–7454 and reference therein. (c) Ohno, M.; Azuma, T.; Kojima, S.;
Shirakawa, Y.; Eguchi, S. Tetrahedron 1996, 52, 4983–4994. (d) Wang,
G.-W.; Saunders, M.; Cross, R. J. J. Am. Chem. Soc. 2001, 123, 256–259.
(e) Krauther, B.; Muller, T.; Duarte-Ruiz, A. Chem.;Eur. J. 2001, 7,
3223–3235. (f) Miller, G. P.; Mack, J. Org. Lett. 2000, 2, 3979–3982. (g)
Miller, G. P.; Mack., J.; Briggs, J. Org. Lett. 2000, 2, 3983–3986.
(h) Paquette, L. A; Graham, R. J. J. Org. Chem. 1995, 60, 2958–2959.
(i) Chronakis, N.; Orfanopoulos, M. Org. Lett. 2001, 3, 545–548.
(j) Chronakis, N.; Froadakis, G.; Orfanopoulos, M. J. Org. Chem.
2002, 67, 3284–3289. (k) Sarova, G. H.; Berberan-Santos, M. N. Chem.
Phys. Lett. 2004, 397, 402–407.
(3) (a) Suzuki, T.; Li, Q.; Khemani, K. C.; Wudl, F.; Almarsson, O.
Science 1991, 254, 1186–1188. (b) Diederich, F. Nature 1994, 369, 199–
207. (c) Taylor, R.; Walton, D. R. M. Nature 1993, 363, 685–693. (d)
Hirsch, A. Angew. Chem., Int. Ed. Engl. 1993, 32, 1138–1141. (e)
Diederich, F.; Issacs, L.; Philp, D. Chem. Soc. Rev. 1994, 23, 243–255.
(4) (a) Zhang, X.; Romero, A.; Foote, C. S. J. Am. Chem. Soc. 1993,
115, 11024–11025. (b) Zhang, X.; Foote, C. S. J. Am. Chem. Soc. 1995,
117, 4271–4275. (c) Vassilikogiannakis, G.; Orfanopoulos, M. J. Am.
Chem. Soc. 1997, 119, 7394–7395. (d) Vassilikogiannakis, G.; Orfanopoulos,
M. Tetrahedron Lett. 1997, 38, 4323–4326. (e) Vassilikogiannakis, G.;
Chronakis, N.; Orfanopoulos, M. J. Am. Chem. Soc. 1998, 120, 9911–
9920. (f) Vassilikogiannakis, G.; Hatzimarinaki, M.; Orfanopoulos, M.
J. Org. Chem. 2000, 65, 8180–8187. (g) Vassilikogiannakis, G.;
Orfanopoulos, M. J. Org. Chem. 1999, 64, 3392–3393.
(5) Zhang, X.; Fan, A.; Foote, C. S. J. Org. Chem. 1996, 61, 5456–
5461.
(6) Mehta, G.; Viswanath, M. B. Tetrahedron Lett. 1995, 36, 5631–
5632.
r
10.1021/ol201590a
Published on Web 07/21/2011
2011 American Chemical Society