ChemComm
Communication
Fig. 4 Preferential CO
2
adsorption sites and the corresponding binding
energies obtained from first-principles calculations.
have synergistic effects on CO binding. The selective adsorp-
2
tion properties of 1 make it a promising candidate for methane
purification and recycling. Future efforts in our laboratory will
focus on the frameworks with an imino s-heptazine backbone
2
Fig. 3 Density distribution of the center-of-mass of CO molecules along
the c-axis in the unit cell of 1 at 273 K and 1 bar simulated by GCMC.
to further improve the C
2 2
and CO storage capacity and
13
conditions. The adsorption enthalpies for CO
are all greater than that for CH , presumably because of the group reporting similar results during the proof stage.
combined effects of the van der Waals host–guest interactions and This work was financially supported by the Foundation of the
2 2 2 2 4
, C H , C H and selectivity. We found a newly published study by Eddaoudi
1
6
C
2
H
6
4
the electrostatic host–guest interactions in this system, thus leading National Natural Science Foundation of China (No. 21371069).
to high selectivity for C2 hydrocarbons and CO2 over CH . (see
Fig. S13–S27 in the ESI†).
4
Notes and references
To imitate the separation behaviour of 1 under a more real-
1
2
3
A. U. Czaja, N. Trukhanb and U. M u¨ ller, Chem. Soc. Rev., 2009, 38,
1284–1293.
S. Al-Zahrani, Q. Song and L. L. Lobban, Ind. Eng. Chem. Res., 1994,
2 4 2 2 4 2 4
world setting, the gas selectivities (CO /CH , C H /CH , C H /
CH and C /CH ) in a binary mixture were calculated employ-
4
2
H
6
4
3
3, 251–258.
1
4
ing the ideal adsorbed solution theory (IAST) method with the
experimental single-component isotherms fitted by the dual-
site Langmuir (DSL) model. (see Table S9 in the ESI†). The
(a) J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and
J. T. Hupp, Chem. Soc. Rev., 2009, 38, 1450–1459; (b) M. P. Suh,
H. J. Park, T. K. Prasad and D. W. Lim, Chem. Rev., 2012, 112,
1
5
782–835; (c) S. Ma and H. C. Zhou, Chem. Commun., 2010, 46, 44–53.
selectivities of C components (C H , C H , and C H ) and CO
2
2
2
2
4
2
6
2
4 F. Nouar, J. F. Eubank, T. Bousquet, L. Wojtas, M. J. Zaworotko and
with respect to CH
respectively, for a range of pressures up to 100 kPa (see
Fig. S44 in the ESI†).
To probe the nature of CO
level, GCMC and first-principles calculations were carried out.
The density distribution of the center-of-mass of CO molecules
obtained from GCMC simulations reveals that CO molecules
in 1 prefer to locate at both the open Cu metal sites and NH
groups within the framework (see Fig. 3 and Fig. S43 in the
ESI†). In order to investigate the role of the s-heptazine groups,
2
we calculated the binding energies of CO at NH sites using the
first-principles method in three model compounds: (a) with
three NH groups on an s-heptazine core, (b) replacing the six
peripheral nitrogen atoms of the s-heptazine core in (a) with
carbon atoms, and (c) replacing the central nitrogen atom of (b)
4
are in excess of 82, 54, 24 and 18,
M. Eddaoudi, J. Am. Chem. Soc., 2008, 130, 1833–1835.
5
(a) S. Xiang, W. Zhou, J. M. Gallegos, Y. Liu and B. Chen, J. Am.
Chem. Soc., 2009, 131, 12415–12419; (b) S. Xiang, W. Zhou, Z. Zhang,
M. A. Green, Y. Liu and B. Chen, Angew. Chem., 2010, 122, 4719–4722
(Angew. Chem., Int. Ed., 2010, 49, 4615–4618).
(a) K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald,
E. D. Bloch, Z. R. Herm, T. H. Bae and J. R. Long, Chem. Rev.,
2
adsorption at the molecular
6
2
2
012, 112, 724–781; (b) Q. Wang, J. Luo, Z. Zhong and A. Borgna,
Energy Environ. Sci., 2011, 4, 42–55.
7 (a) Y. He, W. Zhou, R. Krishna and B. Chen, Chem. Commun., 2012,
8, 11813–11831; (b) H. Wu, Q. Gong, D. H. Olson and J. Li, Chem.
2
II
4
Rev., 2012, 112, 836–868; (c) J. R. Li, J. Sculley and H. C. Zhou, Chem.
Rev., 2012, 112, 869–932.
8
(a) S. Horike, Y. Inubushi, T. Hori, T. Fukushima and S. Kitagawa,
Chem. Sci., 2012, 3, 116–120; (b) S. Couck, J. F. M. Denayer, G. V.
Baron, T. Remy, J. Gascon and F. Kapteijn, J. Am. Chem. Soc., 2009,
131, 6326–6327; (c) D. Britt, H. Furukawa, B. Wang, T. G. Glover and
O. M. Yaghi, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 20637–20640.
R. Luebke, J. F. Eubank, A. J. Cairns, Y. Belmabkhout, L. Wojtas and
M. Eddaoudi, Chem. Commun., 2012, 48, 1455–1457.
9
with a carbon atom (see Fig. 4). The CO binding energy of the 10 B. Li, Z. Zhang, Y. Li, K. Yao, Y. Zhu, Z. Deng, F. Yang, X. Zhou, G. Li,
2
À1
H. Wu, N. Nijem, Y. J. Chabal, Z. Lai, Y. Han, Z. Shi, S. Feng and J. Li,
Angew. Chem., 2012, 124, 1441–1444 (Angew. Chem., Int. Ed., 2012,
NH site in (a) is up to À10.30 kJ mol , while those in (b) and (c)
À1
are both À4.07 kJ mol . We attribute this difference to the
51, 1412–1415).
polarization of CO
2
molecules by the adjacent nitrogen lone 11 A. L. Spek, PLATON: A Multipurpose Crystallographic Tool, Utrecht
University, Utrecht, The Netherlands, 2001.
pairs on the s-heptazine group, which displays the synergistic
1
2 J. L. C. Rowsell and O. M. Yaghi, J. Am. Chem. Soc., 2006, 128,
effects with NH–CO
affinity.
2 2
interactions in (a) to enhance the CO
1304–1315.
13 E. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown
and J. R. Long, Science, 2012, 335, 1606–1610.
4 Y. S. Bae, O. K. Farha, A. M. Spokoyny, C. A. Mirkin, J. T. Hupp and
In summary, we prepared and structurally characterized a
highly porous rht-MOF, 1, which exhibits high adsorption
1
R. Q. Snurr, Chem. Commun., 2008, 4135–4137.
capability for C
ity for C hydrocarbons and CO
and C adsorption enthalpies. Theoretical calculations
2
hydrocarbons and CO with excellent selectiv- 15 (a) S. Keskin, J. Liu, J. K. Johnson and D. S. Sholl, Langmuir, 2008, 24,
254–8261; (b) S. Keskin, J. Liu, R. B. Rankin, J. K. Johnson and
4
over CH as well as record high
2
8
2
2
D. S. Sholl, Ind. Eng. Chem. Res., 2009, 48, 2355–2371.
6 R. Luebke, Ł. J. Weseli n´ ski, Y. Belmabkhout, Z. Chen, Ł. Wojtas and
M. Eddaoudi, Cryst. Growth Des., 2014, 14, 414–418.
C
2
H
4
2 6
H
1
indicate that s-heptazine and NH groups within the framework
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 5031--5033 | 5033