Communications
[10]J. A. Martens, R. Ravishankar, I. E. Mishin, P. A. Jacobs, Angew.
Chem. 2000, 112, 4547 – 4550; Angew. Chem. Int. Ed. 2000, 39,
4376 – 4379.
[11]B. Cornils in New Synthesis with Carbon Monoxide (Ed.: J.
Falbe), Springer, Berlin, 1980, p. 96.
[12]C. Baerlocher, W. M. Meier, D. H. Olson, Atlas of Zeolite
Framework Types, 5th ed., Elsevier, Amsterdam, 2001.
[13]J. L. Schlenker, W. J. Rohrbaugh, P. Chu, E. W. Valyocsik, G. T.
Kokotailo, Zeolites 1985, 5, 355 – 358.
[14]R. F. Lobo, H. van Koningsveld, J. Am. Chem. Soc. 2002, 124,
13222 – 13230.
Experimental Section
Zeolite samples were synthesized according to published methods:
ZSM-22,[26] ZSM-23 was run 4 of reference [27], ZSM-48,[28] SAPO-
11[29] was sample S-11/2 of reference [30]. The Si/Al ratio of ZSM-22,
-23, and -48 was 42, 44, and 50, respectively. The phase purity was
confirmed by XRD and SEM. Gram quantities of as-synthesized
zeolite powder were pelletized (0.25–0.50 mm) by compression,
loaded in a quartz tube, and calcined, first under flowing nitrogen
at 4008C for 5 h and subsequently under oxygen at 5508C for 15 h.
The samples were exchanged with 0.5m aqueous NH4Cl solution and
calcined at 4008C. This procedure resulted in acidic zeolites with
more than 99.5% of the aluminum tetrahedrally coordinated
according to 27Al MAS-NMR (signal at 54 ppm against aluminum
[15]C. S. L. Narasimhan, J. W. Thybaut, G. B. Marin, P. A. Jacobs,
J. A. Martens, J. F. Denayer, G. V. Baron, J. Catal. 2003, 220,
399 – 413.
nitrate reference with
a Bruker Avance 400 MHz instrument;
[16]After hydrogenation, the 3,4-group comprises the following
isomers: 3,4-, 2,3- and 4,4-dimethylheptane; 3-ethyl-2-methyl-
and 3-ethyl-3-methylhexane; 2,3,4-trimethylhexane. The 2,6-
group comprises 2,6-, 2,5-, 3,5-, 2,4-, and 2,2-dimethylheptane.
[17]J. F. Denayer, A. R. Ocakoglu, W. Huybrechts, J. A. Martens,
J. W. Thybaut, G. B. Marin, G. V. Baron, Chem. Commun. 2003,
15, 1880 – 1881.
[18]M. Schenk, B. Smit, T. J. H. Vlugt, T. L. M. Maesen, Angew.
Chem. 2001, 113, 758 – 761; Angew. Chem. Int. Ed. 2001, 40, 736 –
739.
[19]F. Eder, J. A. Lercher, J. Phys. Chem. B 1997, 101, 1273 – 1278.
[20]J. A. Z. Pieterse, S. Veefkind-Reyes, K. Seshan, J. A. Lercher, J.
Phys. Chem. B 2000, 104, 5715 – 5723.
[21]F. Eder, J. A. Lercher, J. Phys. Chem. 1996, 100, 16460 – 16462.
[22]H. Stach, K. Fiedler, J. Janchen, Pure Appl. Chem. 1993, 65,
2193 – 2200.
spinning frequency of 20 kHz). The FT-IR spectra of the zeolites
displayed absorptions at about 3595 and 3745 cmÀ1, assigned to
À
À
bridging Al OH Si groups with Brønsted acid character and frame-
work-terminating silanol groups, respectively. IR absorption bands at
about 3655 cmÀ1, which are characteristic of hydroxy groups on
aluminum atoms that are partially dislodged from the framework and
responsible for Lewis acidity, were absent.
The chemical composition of the SAPO-11 material corresponds
to (Si0.21Al0.43P0.36)02. The SAPO-11 crystals are composed of 28%
aluminosilicate (AS) and 72% silicoaluminophosphate (SAP)
domains.[30] The catalytic activity of SAPO-11 is mainly due to
Brønsted acid sites at the interphase between the AS and SAP
domains.
Catalytic experiments in a fixed-catalyst-bed continuous-flow
reactor: catalyst pellets of compressed zeolite powder with diameters
of 0.25–0.50 mm were loaded in a stainless steel reactor tube with an
internal diameter of 9 mm and a length of 300 mm. Empty volume
was filled with alumina beads of the same diameter. Reaction
conditions: T= 473 K; P = 6.8 MPa; feedstock: 12 wt% propene in
propane; W/F0 = 34 kgsmolÀ1 (W: catalyst weight; F0: molar propene
flow at reactor inlet); liquid feedstock delivered with a liquid mass
flow controller (Brooks Instruments). The reactor outlet was sampled
online at high pressure using a 4-port HPLC sampling valve (Valco)
with an internal volume of 0.1 mL, and analyzed with capillary gas
chromatography. Product NCB was determined offline on a gas
chromatograph with sample hydrogenation module.
[23]V. J. Frilette, W. O. Haag, R. M. Lago, J. Catal. 1981, 67, 218 –
223.
[24]P. A. Jacobs, J. A. Martens, Pure Appl. Chem. 1986, 58, 1329 –
1338.
[25]J. A. Martens, W. Souverijns, W. Verrelst, R. Parton, G. F.
Froment, P. A. Jacobs, Angew. Chem. 1995, 107, 2726 – 2728;
Angew. Chem. Int. Ed. Engl. 1995, 34, 2528 – 2530.
[26]S. Ernst, J. Weitkamp, J. A. Martens, P. A. Jacobs, Appl. Catal.
1989, 48, 137 – 148.
[27]S. Ernst, R. Kumar, J. Weitkamp, Catal. Today 1988, 3, 1 – 10.
[28]P. A. Jacobs, J. A. Martens, Stud. Surf. Sci. Catal. 1987, 33, 22.
[29]M. Mertens, J. A. Martens, P. J. Grobet, P. A. Jacobs in Guide-
lines for Mastering the Properties of Molecular Sieves (Ed.: D.
Barthomeuf), Plenum, New York, 1990, p. 1.
Received: December 23, 2004
Revised: February 23, 2005
Published online: August 1, 2005
[30]J. A. Martens, P. J. Grobet, P. A. Jacobs, J. Catal. 1990, 126, 299 –
305.
Keywords: oligomerization · propene · shape selectivity ·
.
silica-supported phosphoric acid · zeolites
[1]K. Tanabe, W. F. Höldrich, Appl. Catal. A 1999, 181, 399 – 434.
[2]K. Weissermel, H. J. Arpe, Industrial Organic Chemistry, 4th ed.,
Wiley-VCH, Weinheim, 2003, pp. 83 – 85.
[3]S. Matar, L. F. Hatch, Chemistry of Petrochemical Processes, 2nd
ed., Butterworth-Heinemann, Woburn, MA, 2001, chap. 8.
[4]D. York, J. C. Scheckler, D. G. Tajbl in Handbook of Petroleum
Refining Processes, 3rd ed. (Ed.: R. A. Meyers), McGraw-Hill,
New York, 2003, pp. 1.21 – 1.30.
[5]J. Skupinska, Chem. Rev. 1991, 91, 613 – 648.
[6]V. N. Ipatieff, B. B. Corson, G. Egloff, Ind. Eng. Chem. 1935, 27,
1077 – 1081.
[7]K. G. Wilshier, P. Smart, R. Western, T. Mole, T. Behrsing, Appl.
Catal. 1987, 31, 339 – 359.
[8]C. T. OꢀConnor, M. Kojima, Catal. Today 1990, 6, 329 – 349.
[9]S. A. Tabak, F. J. Krambeck, W. E. Garwood, AICHE J. 1986, 32,
1526 – 1531.
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 5687 –5690