Communication
Table 2 Thermal properties of DDSQ-4OSi-FG (1–5) (measured in N
ChemComm
2
and air) Notes and references
Residue at
1000 1C (%)
1 R. H. Baney, M. Itoh, A. Sakakibara and T. Suzuki, Chem. Rev., 1995,
95, 1409–1430.
Mass loss temperature (1C)
Prod.
abbrev.
2
D. B. Cordes, P. D. Lickiss and F. Rataboul, Chem. Rev., 2010, 110,
081–2173.
5% (N
2
)
5% (in air) 10% (N
2
)
10% (in air) (N
2
)
(In air)
2
3
P. D. Lickiss and F. Rataboul, Fully condensed polyhedral
oligosilsesquioxanes(POSS): from synthesis to application, Elsevier
Academic Press Inc., 2008, pp. 1–116.
Y. Morimoto, K. Watanabe, N. Ootake, J. Inagaki, K. Yoshida and
K. Ohguma, US7169873 B2, 2007.
K. Yoshida, T. Hattori, N. Ootake, R. Tanaka and H. Matsumoto, in
Silicon Based Polymers, Advances in Synthesis and Supramolecular
Organization, ed. F. Ganachaud, S. Boileau and B. Boury, Springer,
London-New York, 2008, pp. 205–211.
1
1
2
2
3
4
5
5
-Me
-Ph
-Me
-Ph
-Me
-Me
351
390
400
423
362
373
331
344
361
377
297
347
400
361
373
428
429
456
397
440
427
457
358
399
379
412
378
377
433
425
37
24
37
31
34
58
31
31
30
22
37
37
45
43
22
30
4
5
-Me-hex 404
-Me-dec 426
6
7
K. Yoshizawa, Y. Morimoto, K. Watanabe and N. Ootake, US7319129
B2, 2008.
H. Oikawa, M. Yamahiro, K. Yoshida, N. Ootake, K. Watanabe,
K. Ohno, Y. Tsujii and T. Fukuda, US7256243 B2, 2007.
N. Ootake and K. Yoshida, US7524917 B2, 2009.
Y. Morimoto, K. Watanabe, N. Ootake, J. Inagaki, K. Yoshida and
K. Ohguma, US7449539 B2, 2008.
2
9,30
may be attributed to the differences in the FGs.
of 4-Me, the final residue was at 58%.
In the case
8
9
The presence of –CCH moieties may suggest their possibility to
undergo an intermolecular thermal coupling reaction to yield a
co- or polymeric material. A similar observation was reported by 10 H. Oikawa, M. Yamahiro, K. Ohguma, N. Ootake, K. Watanabe,
K. Ohno, Y. Tsujii and T. Fukuda, US7375170 B2, 2008.
Kawakami et al., in the study of the TGA of DDSQ-4OH. In their
1
1
1 B. Dudziec and B. Marciniec, Curr. Org. Chem., 2016, 20, 1–20.
2 V. Ervithayasuporn, X. Wang and Y. Kawakami, Chem. Commun.,
2009, 5130–5132.
3 V. Ervithayasuporn, R. Sodkhomkhum, T. Teerawatananond, C. Phurat,
P. Phinyocheep, E. Somsook and T. Osotchan, Eur. J. Inorg. Chem.,
case, the intermolecular thermal condensation was noted as a
34
probable explanation of this phenomenon. The issue of the
potential decomposition mechanism of these compounds as well
as the discrepancies in the final residue values of samples 1–5 will
1
2013, 3292–3296.
be a subject of our further detailed research. This may also require 14 V. Ervithayasuporn and S. Chimjarn, Inorg. Chem., 2013, 52,
1
3108–13112.
5 B. W. Schoen, C. T. Lira and A. Lee, J. Chem. Eng. Data, 2014, 59,
483–1493.
16 B. Seurer, V. Vij, T. Haddad, J. M. Mabry and A. Lee, Macromolecules,
010, 43, 9337–9347.
7 B. W. Schoen, D. Holmes and A. Lee, Magn. Reson. Chem., 2013, 51,
90–496.
18 B. W. Schoen, C. T. Lira and A. Lee, J. Chem. Eng. Data, 2014, 59,
483–1493.
more complete analyses, e.g., of exhaust gasses emitted from the
degradation of the material (by TGA-MS or TGA-IR) or performing
the TGA with a different gas flow rate.
In summary, we have reported the design and synthesis of
inorganic–organic DDSQ-based building blocks characterized by a
1
1
2
1
4
rigid structure and the presence of four FGs, i.e., –H, –HCQCH
2
,
1
–
CH CHQCH , –CCH, –hex-5-enyl, and –dec-9-enyl. The new
2
2
1
9 B. Dudziec, M. Rzonsowska, B. Marciniec, D. Brz ˛a kalski and
compounds were precisely characterized using spectroscopic and
B. Wo ´z niak, Dalton Trans., 2014, 43, 13201–13207.
XRD methods, and their thermal properties were determined. 20 P. Z
˙
ak, M. Majchrzak, G. Wilkowski, B. Dudziec, M. Dutkiewicz and
B. Marciniec, RSC Adv., 2016, 6, 10054–10063.
1 P. Z˙ ak, D. Frc ˛a kowiak, M. Grzelak, M. Bołt, M. Kubicki and
These DDSQ-4OSi-FG compounds may be used as valuable pre-
cursors for the synthesis of macromolecular hybrid systems of the
2
B. Marciniec, Adv. Synth. Catal., 2016, 358, 3265–3276.
original architecture. They may act as nodes that contribute to the 22 P. Z
˙
ak, B. Dudziec, M. Kubicki and B. Marciniec, Chem. – Eur. J.,
2
014, 20, 9387–9393.
definition of a three-dimensional Si–O–Si rigid framework, respon-
sible for the improvement of, e.g., optical, thermal, or mechanical
2
3 H. Endo, N. Takeda and M. Unno, Organometallics, 2014, 33,
4148–4151.
properties of synthesized materials. The type of FG implies certain 24 M. Walczak, R. Januszewski, M. Majchrzak, M. Kubicki, B. Dudziec
and B. Marciniec, New J. Chem., 2017, 41, 3290–3296.
synthetic strategies and co-reagents to be used for obtaining the
desired hybrid material. Our studies may open a new unexplored
2
5 P. Z˙ ak, B. Dudziec, M. Dutkiewicz, M. Ludwiczak, B. Marciniec and
M. Nowicki, J. Polym. Sci., Part A: Polym. Chem., 2016, 54, 1044–1055.
field of research in the chemistry of double-decker silsesquioxanes, 26 Y. Wei, Q. Jiang, J. Hao and J. Mu, Polym. Adv. Technol., 2017, 28,
5
16–523.
which can lead to novel, molecular and macromolecular systems
based on selectively introduced functionalities.
Financial support from the National Science Centre (Poland)
Project OPUS No. DEC-2012/07/B/ST5/03042 and DEC-2016/23/
B/ST5/00201 and National Centre for Research and Develop-
ment in Poland – PBS3/A1/16/2015 is acknowledged.
2
2
7 Y. Wei, Q. Jiang, J. Hao and J. Mu, RSC Adv., 2017, 7, 3914–3920.
8 Q. Jiang, W. Zhang, J. Hao, Y. Wei, J. Mu and Z. Jiang, J. Mater.
Chem. C, 2015, 3, 11729–11734.
2
3
3
3
3
9 M. Kohri, J. Matsui, A. Watanabe and T. Miyashita, Chem. Lett.,
2010, 39, 1162–1163.
0 A. C. Kucuk, J. Matsui and T. Miyashita, J. Mater. Chem., 2012, 22,
3853–3858.
1 A. C. Kucuk, J. Matsui and T. Miyashita, Thin Solid Films, 2013, 534,
5
77–583.
2 E. A. Quadrelli and J. M. Basset, Coord. Chem. Rev., 2010, 254,
07–728.
3 M. T. Hay, B. Seurer, D. Holmes and A. Lee, Macromolecules, 2010,
3, 2108–2110.
Conflicts of interest
7
The authors have no conflicts of interest to declare for this
communication.
4
34 D. W. Lee and Y. Kawakami, Polym. J., 2007, 39, 230–238.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2017