Published on Web 03/22/2005
Reversible Enolization of â-Amino Carboxamides by Lithium
Hexamethyldisilazide
Anne J. McNeil and David B. Collum*
Contribution from the Department of Chemistry and Chemical Biology, Baker Laboratory,
Cornell UniVersity, Ithaca, New York 14853-1301
Abstract: The enolization of â-amino carboxamides by lithium hexamethyldisilazide (LiHMDS) in THF/
toluene and subsequent diastereoselective alkylation with CH I are reported. In situ IR spectroscopic studies
3
reveal that â-amino carboxamides coordinate to LiHMDS at -78 °C before enolization. Comparison with
structurally similar carboxamides suggests that the â-amino group promotes the enolization. IR spectroscopic
studies also show that the enolization is reversible. Efficient trapping of the enolate by CH
3
I affords full
conversion to products. Li and 15N NMR spectroscopic studies reveal that lithium enolate-LiHMDS mixed
dimers and trimers as well as a homoaggregated enolate are formed during the reaction. At ambient
temperature, racemization of the â-position through a putative reversible Michael addition was observed.
6
Introduction
We show herein that the LiHMDS-mediated enolization of
affords an equilibrium mixture of 1 and enolate 4. The high
yields of alkylated product derive from a relatively slow
19
As an adjunct to investigations of the enolization and alkyla-
tion of â-amino esters, we had occasion to study the enolization
1
2
enolization followed by an efficient trapping of enolate 4 with
and alkylation of â-amino carboxamides (eq 1). The protocol,
using an unprotected amino group,3-5 is synthetically interesting
CH I. We also show, however, that this seemingly simple
3
transformation belies a complex ensemble of lithium enolate
given the biochemical and pharmaceutical importance of
6
7
â-amino amides and â-amino acids. Furthermore, the revers-
ible enolization suggests an underlying complexity that piqued
our interest. The â-amino group may also be important because
enolizations of carboxamides generally require bases stronger
than lithium hexamethyldisilazide (LiHMDS).8
mixed aggregates. Moreover, an NMR spectroscopic technique
in conjunction with a Job plot suggests that the homoaggregate
of the enolate is hexameric.
(
1) (a) McNeil, A. J.; Toombes, G. E. S.; Chandramouli, S. V.; Vanasse, B.
J.; Ayers, T. A.; O’Brien, M. K.; Lobkovsky, E.; Gruner, S. M.; Marohn,
J. A.; Collum, D. B. J. Am. Chem. Soc. 2004, 126, 5938-5939. (b) McNeil,
A. J.; Toombes, G. E. S.; Gruner, S. M.; Lobkovsky, E.; Collum, D. B.;
Chandramouli, S. V.; Vanasse, B. J.; Ayers, T. A. J. Am. Chem. Soc. 2004,
1
26, 16559-16568.
(
2) An X-ray crystal structure of the N-Boc derivative of 2 was used to assign
1
the stereochemistry for the major product of the alkylation. H NMR spectra
8
(d -THF) recorded on the N-Boc derivatives of 2 and 3 gave coupling
constants for the R-H of 3.5 and 8.8 Hz, respectively (Supporting
Information).
(3) Chandramouli, S. V.; O’Brien, M. K.; Powner, T. H. WO Patent, 0040547,
2
000.
(
4) A similar enolization and alkylation of an unprotected â-alanine pseu-
doephedrine carboxamide with LiHMDS/MeI/LiCl at 0 °C in THF has been
reported: Nagula, G.; Huber, V. J.; Lum, C.; Goodman, B. A. Org. Lett.
2
000, 2, 3527-3529.
5) Enolates derived from unprotected R-amino amides have been alkylated:
a) Myers, A. G.; Schnider, P.; Kwon, S.; Kung, D. W. J. Org. Chem.
999, 64, 3322-3327. (b) Myers, A. G.; Gleason, J. L.; Yoon, T.; Kung,
(
(
1
D. W. J. Am. Chem. Soc. 1997, 119, 656-673. (c) Roy, R. S.; Imperiali,
B. Tetrahedron Lett. 1996, 37, 2129-2132. (d) Myers, A. G.; Yoon, T.;
Gleason, J. L. Tetrahedron Lett. 1995, 36, 4555-4558. (e) Myers, A. G.;
Gleason, J. L.; Yoon, T. J. Am. Chem. Soc. 1995, 117, 8488-8489.
6) For related alkylations of N-protected â-amino carboxamide enolates, see:
(7) (a) EnantioselectiVe Synthesis of â-Amino Acids; Juaristi, E., Ed.; Wiley-
VCH: New York, 1997. (b) Sewald, N. Angew. Chem., Int. Ed. 2003, 42,
5794-5795. (c) Ma, J.-A. Angew. Chem., Int. Ed. 2003, 42, 4290-4299.
(d) Liu, M.; Sibi, M. P. Tetrahedron 2002, 58, 7991-8035. (e) Abele, S.;
Seebach, D. Eur. J. Org. Chem. 2000, 1-15. (f) Cardillo, G.; Tomasini,
C. Chem. Soc. ReV. 1996, 117-128. (g) Cole, D. C. Tetrahedron 1994,
32, 9517-9582. (h) Juaristi, E.; Quintana, D.; Escalante, J. Aldrichimica
Acta 1994, 27, 3-11.
(
(
a) Guti e´ rrez-Garc ´ı a, V. M.; Reyes-Rangel, G.; Mu n˜ oz-Mu n˜ iz, O.; Juaristi,
E. HelV. Chim. Acta 2002, 85, 4189-4199. (b) Guti e´ rrez-Garc ´ı a, V. M.;
L o´ pez-Ruiz, H.; Reyes-Rangel, G.; Juaristi, E. Tetrahedron 2001, 57, 6487-
6
496. (c) Ponsinet, R.; Chassaing, G.; Vaissermann, J.; Lavielle, S. Eur. J.
Org. Chem. 2000, 83-90. (d) Davies, S. G.; Edwards, A. J.; Walters, I. A.
S. Recl. TraV. Chim. Pays-Bas 1995, 114, 175-183. (e) Kurihara, T.;
Terada, T.; Satoda, S.; Yoneda, R. Chem. Pharm. Bull. 1986, 34, 2786-
(8) For example, see: Coumbarides, G. S.; Eames, J.; Ghilagaber, S. J. Labelled
Compd. Radiopharm. 2003, 46, 1033-1053.
2
798. (f) McGarvey, G. J.; Williams, J. M.; Hiner, R. N.; Matsubara, Y.;
(9) The N,N-di-n-butyl moiety offers superior solubility in THF/toluene
solutions at -78 °C when compared to structurally related â-amino
carboxamide enolates.
Oh, T. J. Am. Chem. Soc. 1986, 108, 4943-4952. (g) Yoneda, R.; Terada,
T.; Satoda, S.; Kurihara, T. Heterocycles 1985, 23, 2243-2246.
10.1021/ja043470s CCC: $30.25 © 2005 American Chemical Society
J. AM. CHEM. SOC. 2005, 127, 5655-5661
9
5655