Koji Yonehara et al.
COMMUNICATIONS
Emeritus T. Hosokawa (Kochi University of Technology) for
their invaluable discussions. We are also indebted to Dr. K.
Kuwata (Kyoto University) for high-resolution mass spectra
(
HR-MS) analysis. We thank Mr. M. Makino (Nippon Sho-
kubai Co., Ltd.) for his active collaboration.
References
[
1] For reviews, see: a) R. R. A. Kitson, A. Millemaggi,
R. J. K. Taylor, Angew. Chem. 2009, 121, 9590; Angew.
Chem. Int. Ed. 2009, 48, 9426; b) H. M. R. Hoffmann, J.
Rabe, Angew. Chem. 1985, 97, 96; Angew. Chem. Int.
Ed. Engl. 1985, 24, 94.
Scheme 2. A plausible reaction pathway.
syntheses of a-methylene-g-butyrolactone derivatives
employing molecular oxygen as an oxidant. Further
work is currently in progress to decrease the ratio of
[
2] For reviews, see: a) N. Petragnani, H. M. C. Ferraz,
G. V. J. Silva, Synthesis 1986, 157; b) J. C. Sarma, R. P.
Sharma, Heterocycles 1986, 24, 441; c) S. S. Newaz, Al-
drichimica Acta 1977, 10, 64; d) P. A. Grieco, Synthesis
[
19]
alkene/acrylic acid
true catalytic species.
and clarify the details of the
1
975, 67; e) R. B. Gammill, C. A. Wilson, T. A. Bryson,
Synth. Commun. 1975, 5, 245.
[
[
[
3] H. Mattes, C. Benezra, Tetrahedron Lett. 1985, 26,
5
697.
4] J. Martin, P. C. Watts, F. Johnson, J. Chem. Soc. (D)
970, 27.
5] a) S. V. Gagnier, R. C. Larock, J. Org. Chem. 2000, 65,
Experimental Section
1
Caution: Although no accident has so far occurred in these
studies, the heating of molecular oxygen may lead to explo-
sion. Please take appropriate care when conducting these
reactions.
1
525; b) S. Iyer, C. Ramesh, Tetrahedron Lett. 1999, 40,
4
719.
[
6] a) N. Ferret, L. Mussate-Mathieu, P. Perfetti, J.-P.
Zahra, B. Waegell, Bull. Soc. Chim. Fr. 1996, 133, 1023;
b) N. Ferret, L. Mussate-Mathieu, J.-P. Zahra, B. Wae-
gell, J. Chem. Soc. Chem. Commun. 1994, 2589.
Typical Procedure (Table 2, entries 1 and 2)
A thick-walled test-tube was charged with Pd ACHTUGNTRNEUNG( OCOCF )
3 2
[
7] In our experiments, Pd
2 mL) saturated by oxygen was quite stable at 908C
for at least 5 days. On the other hand, all of the Pd-
(OAc) (15 mg) in acrylic acid (2 mL) saturated by
ACHTUNGENTRNUNG( OAc) (15 mg) in acetic acid
2
(
(
PdACHTUNGTRENNUNG
0.01 mmol, 1 mol% to acrylic acid)/Cu
0.04 mmol, 4 mol% to acrylic acid) (catalytic system A) or
(OCOCMe ) (0.05 mmol, 5 mol% to acrylic acid) (cata-
ACHTUNGTNERUNNG( OAc) ·H O
2 2
(
3
2
AHCTUNGTRENNUNG
2
lytic system B) followed by the addition of toluene (5 mL),
acrylic acid (1 mmol), and 1-hexene (10 mmol). The tube
was placed in a mini-autoclave apparatus. The reaction was
carried out at 708C for 24 h under oxygen, and the pressure
was kept at 0.4 MPa by a continuous supply of oxygen
during the reaction. In order to recover the palladium (and
copper) species, the reaction mixture was quantitatively
transferred to a 30-mL vessel and to this solution was added
oxygen decomposed rapidly to Pd(0) at the same tem-
perature within only 5 min.
[
8] For recent reviews on the palladium-catalyzed aerobic
oxidation, see: a) J. Tsuji, Palladium Reagents and Cat-
alysts, John Wiley & Sons, Ltd.: Chichester, U.K., 2004;
b) E. Negishi, (Ed.), Handbook of Organopalladium
Chemistry for Organic Synthesis, Wiley-Interscience:
New York, 2002; c) J. Piera, J.-E. Bꢂckvall, Angew.
Chem. 2008, 120, 3558; Angew. Chem. Int. Ed. 2008, 47,
ꢁ
Amberlyst-15 ion-exchange resin for adsorption of these
species. After filtration of the ion-exchange resin, the sol-
vent and volatile substrates/products were evaporated under
reduced pressure (water bath temperature: 40–508C), and
the residue was subjected to column chromatography on
silica gel with hexane/ethyl acetate (v/v=5/1) as an eluent
to give 5-butyl-3-methylenedihydrofuran-2(3H)-one (exo
isomer) together with 5-butyl-3-methylfuran-2(5H)-one
3
506; d) L. J. Gooßen, N. Rodriguez, K. Gooßen,
Angew. Chem. 2008, 120, 3144; Angew. Chem. Int. Ed.
008, 47, 3100; e) E. M. Beccalli, G. Broggini, M. Mar-
2
tinelli, S. Sottocornola, Chem. Rev. 2007, 107, 5318;
f) B. V. Popp, S. S. Stahl, Top. Organomet. Chem. 2007,
2
2, 149; g) V. Kotov, C. C. Scarborough, S. S. Stahl,
Inorg. Chem. 2007, 46, 1910; h) C. N. Cornell, M. S.
Sigman, Inorg. Chem. 2007, 46, 1903; i) J. Muzart, Tet-
rahedron 2005, 61, 5955; j) T. Nishimura, S. Uemura,
Synlett 2004, 201; k) B. M. Stoltz, Chem. Lett. 2004, 33,
(
endo isomer) (yield: 0.72–0.70 mmol, 72–70%) as products.
The ratio of exo isomer/endo isomer (95/5–91/9) was deter-
1
mined by H NMR.
3
62; l) S. S. Stahl, Angew. Chem. 2004, 116, 3480;
Angew. Chem. Int. Ed. 2004, 43, 3400; m) M. S. Sigman,
M. J. Schultz, Org. Biomol. Chem. 2004, 2, 2551; n) I. I.
Moiseev, M. N. Vargaftik, Coord. Chem. Rev. 2004, 248,
Acknowledgements
2
381; o) J. M. Takacs, X.-t. Jiang, Curr. Org. Chem.
We are deeply grateful to Prof. M. Suginome (Kyoto Univer-
sity), Prof. N. Mizuno (The University of Tokyo), and Prof.
2003, 7, 369; p) R. A. Sheldon, I. W. C. E. Arends, G.-J.
ten Brink, A. Dijksman, Acc. Chem. Res. 2002, 35, 774.
1074
ꢀ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2011, 353, 1071 – 1075