Synthesis of 9-SA silver complex (1): The colorless crystals of 1 (9-SA:
silver complex) were grown by layering an acetonitrile solution of silver
nitrate over an aqueous solution of 9-SA and crystals were obtained
within two weeks. The same complex was also obtained by using silver
triflate and silver perchlorate as confirmed by X-ray crystallography.
HRMS characterization of complex 1 was carried out in both ESI(+) and
ESI(ꢀ) modes which shows the polymeric structure (Table S1†).
Elemental analysis (C7H10AgN5O4S as monohydrate): calculated C,
22.84; H, 2.74; N, 19.02; found C, 22.78; H, 2.51; N, 18.33%.
1 (a) C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly,
J. Sampaio, F. M. Raymo, J. F. Stoddart and J. R. Heath, Science,
2000, 289, 1172; (b) Y. Luo, C. P. Collier, J. O. Jeppesen,
K. A. Nielsen, E. DeIonno, G. Ho, J. Perkins, H.-R. Tseng,
T. Yamamoto, J. F. Stoddart and J. R. Heath, ChemPhysChem,
2002, 3, 519; (c) A. H. Flood, J. F. Stoddart, D. W. Steuerman and
J. R. Heath, Science, 2004, 306, 2055; (d) J. E. Green, J. W. Choi,
A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno,
Y. Luo, B. A. Sheriff, K. Xu, Y. S. Shin, H.-R. Tseng,
ꢁ
J. F. Stoddart and J. R. Heath, Nature, 2007, 445, 414; (e) J. Berna,
D. A. Leigh, M. Lubomska, S. M. Mendoza, E. M. Perez,
Fig. 4 Vapour sorption isotherms for 1: H2O (circles) at 298 K; MeOH
(triangles) at 293 K and EtOH (squares) at 298 K. Closed symbols
indicate adsorption and open symbols desorption. P0 is the saturated
vapour pressure of the adsorbates at the corresponding temperature.
ꢁ
P. Rudolf, G. Teobaldi and F. Zerbetto, Nat. Mater., 2005, 4, 704;
(f) Y. Liu, A. H. Flood, P. A. Bonvallet, S. A. Vignon,
B. H. Northrop, H.-R. Tseng, J. O. Jeppesen, T. J. Huang,
B. Brough, M. Baller, S. Maganov, S. D. Solares, W. A. Goddard,
C.-M. Ho and J. F. Stoddart, J. Am. Chem. Soc., 2005, 127, 9745;
(g) B. K. Juluri, A. S. Kumar, Y. Liu, T. Ye, Y.-W. Yang,
A. H. Flood, L. Fang, J. F. Stoddart, P. S. Weiss and T. J. Huang,
ACS Nano, 2009, 3, 291.
corresponds to a total 1.4 mol of H2O per formula unit of 1. The
desorption curve does not retrace the adsorption curve and a prom-
inent hysteresis was observed which indicates strong interaction of the
H2O molecules with pore surfaces. The bE0 value, which reflects
adsorbate–adsorbent affinity, calculated using DR equation is found
to be 5.8 kJ molꢀ1 and also suggests strong interaction of H2O
molecules with 1. The exclusion of larger molecules like MeOH and
EtOH is probably because of the smaller channel dimension
compared to the kinetic diameter of the adsorbate molecules.
In conclusion, we have synthesized a silver-complex with entangled
networks showing selective water vapour adsorption over methanol
or ethanol. Thus, the notion of creating hierarchical structures with
interesting topological preferences and properties as a result of minor
chemical modification of the adenine nucleobase has been realized.
We thank Single Crystal CCD X-ray facility at IIT-Kanpur, CSIR,
for S. P. Mukherjee Fellowship (J.K.). This work is supported by
Council for Scientific and Industrial Research, India (SV).
2 (a) Molecular Catenanes, Rotaxanes and Knots: a Journey Through the
World of Molecular Topology, ed. J.-P. Sauvage and C. Dietrich-
Buchecker, Wiley-VCH, Weinheim, 1999; (b) L. Fang, M. A. Olson,
ꢁ
D. Benıtez, E. Tkatchouk, W. A. Goddard, III and J. F. Stoddart,
Chem. Soc. Rev., 2010, 39, 17 and references are therein; (c)
G. A. Breault, C. A. Hunter and P. C. Mayers, Tetrahedron, 1999,
55, 5265; (d) T. J. Hubin and D. H. Busch, Coord. Chem. Rev., 2000,
200–202, 5; (e) L. Raehm, D. G. Hamilton and J. K. M. Sanders,
Synlett, 2002, 1743; (f) E. R. Kay, D. A. Leigh and F. Zerbetto,
Angew. Chem., Int. Ed., 2007, 46, 72; (g) J. F. Stoddart, Chem. Soc.
Rev., 2009, 38, 1802.
3 B. Hudson and J. Vinograd, Nature, 1967, 216, 647.
4 W. R. Wikoff, L. Liljas, R. L. Duda, H. Tsuruta, R. W. Hendrix and
J. E. Johnson, Science, 2000, 289, 2129.
5 (a) S. Verma, A. K. Mishra and J. Kumar, Acc. Chem. Res., 2010, 43,
79; (b) C. S. Purohit, A. K. Mishra and S. Verma, Inorg. Chem., 2007,
46, 8493; (c) C. S. Purohit and S. Verma, J. Am. Chem. Soc., 2006, 128,
400; (d) J. Kumar and S. Verma, Inorg. Chem., 2009, 48, 6350; (e)
A. K. Mishra and S. Verma, Inorg. Chem., 2010, 49, 8012; (f)
C. S. Purohit and S. Verma, J. Am. Chem. Soc., 2007, 129, 3488; (g)
M. D. Pandey, A. K. Mishra, V. Chandrasekhar and S. Verma,
Inorg. Chem., 2010, 49, 2020; (h) A. K. Mishra, C. S. Purohit and
S. Verma, CrystEngComm, 2008, 10, 1296.
Notes and references
‡ General: 1H and 13C NMR spectra were obtained on a JEOL-DELTA2
500 model spectrometer operating at 500 MHz and 125 MHz, respec-
tively. High resolution mass spectra were obtained on a WATERS HAB
213 machine, Department of Chemistry, IIT-Kanpur, India.
^ ꢁ
6 (a) P. Adrien Cote and G. K. H. Shimizu, Coord. Chem. Rev., 2003,
245, 49; (b) D. J. Hoffart, S. A. Dalrymple and G. K. H. Shimizu,
Inorg. Chem., 2005, 44, 8868; (c) F.-F. Li, J.-F. Ma, S.-Y. Song and
J. Yang, Cryst. Growth Des., 2006, 6, 209; (d) H. Wu, X.-W. Dong,
H.-Y. Liu, J.-F. Ma, S.-L. Li, J. Yang, Y.-Y. Liu and Z.-M. Su,
Dalton Trans., 2008, 5331; (e) H.-Y. Liu, H. Wu, J.-F. Ma, J. Yang
and Y.-Y. Liua, Dalton Trans., 2009, 7957; (f) Z.-P. Deng,
Z.-B. Zhu, S. Gao, L.-H. Huo, H. Zhao and S. W. Ng, Dalton
Trans., 2009, 6552.
Synthesis of 2-(N9-adeninyl)ethanesulfonic acid: 9-(2-bromoethyl)
adenine9 (1.5 g, 1.0 eq.) and Na2SO3 (940 mg, 1.2 eq.) were suspended in
15 mL of an ethanol : water (2 : 1) mixture and refluxed at 80 ꢂC till the
completion of reaction as monitored by TLC analysis. The solution was
cooled down to room temperature and acidified with 1 N HCl to pH 5
and dried. The residue was dissolved in 10 mL of dimethyl formamide
and stirred for 10 min and filtered to remove excess of NaCl. The DMF
layer was evaporated and the residue was washed with 10 mL of methanol
and dried which afforded the title compound as an off white powder (1.1
g, yield 73%). HRMS: [M + H]+ calculated: 244.0504, found: 244.0508;
[M + Na]+ calculated: 266.0324, found 266.0327. mp > 275 ꢂC; 1H NMR
(500 MHz, DMSO-d6, 25 ꢂC, TMS): d (ppm) 2.97 (t, 2H, CH2), 4.36 (t,
7 D. Venkataraman, Y. Du, S. R. Wilson, P. Zhang, K. Hirsch and
J. S. Moore, J. Chem. Educ., 1997, 74, 915.
ꢁ
8 (a) J. P. Garcıa-Teran, O. Castillo, A. Luque, U. Garcıa-Couceiro,
G. Beobide and P. Roman, Inorg. Chem., 2007, 46, 3593; (b)
ꢁ
ꢁ
D. Dobrzynska and L. B. Jerzykiewicz, J. Am. Chem. Soc., 2004,
2H, CH2), 7.16 (s, 2H, NH2), 8.09 (s, 1H, C8–H), 8.10 (s, 1H, C2–H); 13
C
126, 11118.
9 A. Fkyerat, M. Demeunynck, J. F. Constant, P. Michon and
J. Lhomme, J. Am. Chem. Soc., 1993, 115, 9952.
NMR (125 MHz, DMSO-d6, 25 ꢂC, TMS): d (ppm) 50.86, 119.06, 141.85,
149.81, 152.73, 156.28.
3014 | CrystEngComm, 2012, 14, 3012–3014
This journal is ª The Royal Society of Chemistry 2012