C O M M U N I C A T I O N S
2005 and the Hungarian Scientific Research Funds (OTKA)
K68498 projects and the NSF at Utah (Grant CHE-0306720). A
diffractometer purchase grant from the National Office for Research
and Technology (Grant MU-00338/2003) is gratefully acknowl-
edged.
Supporting Information Available: Synthetic details, X-ray
1
crystallographic data for of 1 and 2 in CIF format; H and 31P NMR
line shape analysis; experimental and evaluation method for solution
X-ray diffraction measurements; absorption and luminescence spec-
troscopy. This material is available free of charge via the Internet at
References
Figure 4. Difference radial distribution function (green line) g(r) for
solution of 179 mM gold(I) macrocycle 2 in nitromethane; (red line)
Au‚‚‚Au aurophilic interaction; (blue line) Au‚‚‚P interaction.
(1) (a) Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. ReV. 2000, 100, 853-
908. (b) Swiegers, G. F.; Malefetse, T. J. Chem. ReV. 2000, 100, 3483-
3538.
(2) (a) Cotton, F. A.; Lin, C.; Murillo, C. A. Acc. Chem. Res. 2001, 34, 759-
771. (b) Cotton, F. A.; Lin, C.; Murillo, C. A. Proc. Natl. Acad. Sci. U.S.A.
2002, 99, 4810-4813. (c) Wing-Wah Yam, V.; Kam-Wing Lo, K. Chem.
Soc. ReV. 1999, 28, 323-334.
solution. The detailed data treatment, the structure, and radial
distribution functions obtained are given in the Supporting Informa-
tion.
(3) (a) Brandys, M.-C.; Jennings, M. C.; Puddephatt, P. J. J. Chem. Soc.,
Dalton Trans. 2000, 4601-4606. (b) Lin, R.; Yip, J. H. K.; Zhang, K.;
Koh, L. L.; Wong, K.-Y.; Ho, K. P. J. Am. Chem. Soc. 2004, 126, 15852-
15869. (c) Tzeng, B.-C.; Yeh, H.-T.; Wu, Y.-L.; Kuo, J.-H.; Lee, G.-H.;
Peng, S.-M. Inorg. Chem. 2006, 45, 591-598. (d) Irwin, M. J.; Rendina,
L. M.; Vittal, J. J.; Puddephatt, P. J. Chem. Commun. 1996, 1281-1282.
(e) McArdle, C. P.; Van, S.; Jennings, M. C.; Puddephatt, P. J. J. Am.
Chem. Soc. 2002, 124, 3959-3965. (f) McArdle, C. P.; Irwin, M. J.;
Jennings, M. C.; Puddephatt, P. J. Angew. Chem., Int. Ed. 1999, 38, 3376-
3378. (g) McArdle, C. P.; Vittal, J. J.; Puddephatt, P. J. Angew. Chem.,
Int. Ed. 2000, 39, 3819-3822. (h) Habermehl, N. C.; Eisler, D. J.; Kirby,
C. K.; Yue, N. L.-S.; Puddephatt, P. J. Organometallics 2006, 25, 2921-
2928. (i) Puddephatt, P. J. Chem. Commun. 1998, 1055-1062. (j) Irwin,
M. J.; Vittal, J. J.; Yap, G. P. A.; Puddephatt, P. J. J. Am. Chem. Soc.
1996, 118, 13101-13102. (k) Burchell, T. J.; Eisler, D. J.; Jennings, M.
C.; Puddephatt, P. J. Chem. Commun. 2003, 2228-2229. (l) Mohr, F.;
Jennings, M. C.; Puddephatt, R. P. Angew. Chem., Int. Ed. 2004, 43, 969-
971. (m) Raptis, R. G.; Murray, H. H.; Fackler, J. P. J. Chem. Soc., Chem.
Commun. 1987, 737-739. (n) LeBlanc, D. J.; Smith, R. W.; Wang, Z.;
Howard-Lock, H. E.; Lock, C. J. L. J. Chem. Soc., Dalton Trans. 1997,
3263-3267.
The Au-P and Au‚‚‚Au interactions in 2 arising around 2.3 and
2.9 Å, respectively, are shown in Figure 4. The Au-P distance
and root-mean-square deviations were found to be 2.34(1) and
0.10(1) Å, respectively. The diagonal Au‚‚‚P distances are 3.88(2)
Å [σ ) 0.30(2)]. The Au‚‚‚Au distance resulted in 2.91(1) Å with
the root-mean-square deviation σ ) 0.17(1); thus no significant
change in aurophilic distance is observed upon dissolution. The
Au‚‚‚Au, Au-P, and diagonal Au‚‚‚P distances determined by
solution X-ray diffraction agree well with those found in the crystal
structure of 2.
The UV-visible absorption spectrum of 1 closely resembles that
of the xantphos ligand, but significantly different spectral charac-
teristics appears for 2, whose first band with a maximum at 301
nm is red-shifted and more clearly distinguishable (Supporting
Information Figure S15a). The energy of the lowest singlet-excited
state is quite insensitive to the polarity of the medium because the
onsets of the absorption hardly change when ethanol is replaced
by dichloromethane. The solutions of both compound 1 and 2 are
barely luminescent at room temperature, but intense light emission
is observed upon excitation in rigid ethanol glass at 77 K. The
spectra obtained with steady-state irradiation correspond to those
recorded in the 0.1-30 ms time interval after the excitation with a
flash lamp (Supporting Information Figure S15b), thus indicating
that the emissions are phosphorescence. The similarity of the spectra
of the two gold complexes and xantphos seems to indicate that the
emitting states of 1 and 2 have intraligand (IL) type character. The
triplet-excited-state lifetimes are 17.4 and 2.8 ms for xantphos and
2, respectively. The heavy atom effect of gold is probably
responsible for the more rapid deactivation of the triplet-excited
complex.
(4) Schmidbaur, H.; Graf, W.; Mu¨ller, G. Angew. Chem., Int. Ed. Engl. 1988,
27, 417-419.
(5) (a) Schmidbaur, H. Chem. Soc. ReV. 1995, 43, 391-401. (b) Pyykko¨, P.
Chem. ReV. 1997, 97, 597-636.
(6) (a) Khan, M. N. I.; King, C.; Heinrich, D. D.; Fackler, J. P.; Porter, L. C.
Inorg. Chem. 1989, 28, 2150-2154. (b) Wang, J.-C.; Khan, M. N. I.;
Fackler, J. P. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1989,
C45, 1482-1485. (c) Schuh, W.; Kopacka, H.; Wurst, K.; Peringer, P.
Chem. Commun. 2001, 2186-2187.
(7) Pintando-Alba, A.; de la Riva, H.; Nieuwhuyzen, M.; Bautista, D.; Raithby,
P. R.; Sparkes, H. A.; Teat, S. J.; Lo´pez-de-Luzuriaga, J. M.; Lagunas,
M. C. Dalton Trans. 2004, 3459-3467.
(8) Megyes, T.; Jude, H.; Gro´sz, T.; Bako´, I.; Radnai, T.; Ta´rka´nyi, G.;
Pa´linka´s, G.; Stang, P. J. J. Am. Chem. Soc. 2005, 127, 10731-10738.
(9) Yip, J. H. K.; Prabhavathy, J. Angew. Chem., Int. Ed. 2001, 40, 2159-
2162.
(10) Piguet, C.; Bernardinelli, G.; Hopfgartner, G. Chem. ReV. 1997, 97, 2005-
2062.
(11) Canary, J. W.; Allen, C. S.; Castagnetto, J. M.; Wang, Y. J. Am. Chem.
Soc. 1995, 117, 8484-8485.
(12) (a) Kra¨mer, R.; Lehn, J.-M.; De Cian, A.; Fischer, J. Angew. Chem., Int.
Ed. Engl. 1993, 32, 703-706. (b) Tabellion, F. M.; Seidel, S. R.; Arif,
A. M.; Stang, P. J. Angew. Chem., Int. Ed. 2001, 40, 1529-1532. (c)
Ezuhara, T.; Endo, K.; Aoyama, Y. J. Am. Chem. Soc. 1999, 121, 3279-
3283. (d) Siemeling, U.; Scheppelmann, I.; Neumann, B.; Stammler, A.;
Stammler, H.-G.; Frelek, J. Chem. Commun. 2003, 2236-2237. (e)
Neukirch, H.; Guido, E.; Liantonio, R.; Metrangolo, P.; Pilati, T.; Resnati,
G. Chem. Commun. 2005, 1534-1536.
In conclusion, we have synthesized and structurally characterized
in both solution and solid state two gold(I) rings showing short
Au‚‚‚Au aurophilic interactions. These gold(I) cyclic systems could
provide unique materials with new properties for chemical sensing,
catalysis, and the manufacturing of nanoscale devices.
(13) (a) Hollatz, C.; Schier, A.; Schmidbaur, H. Inorg. Chim. Acta 2000, 300-
302, 191-199. (b) Barranco, E. M.; Concepcio´n Gimeno, M.; Laguna,
A. Inorg. Chim. Acta 1999, 291, 60-65.
(14) Harwell, D. E.; Mortimer, M. D.; Knobler, C. B.; Anet, F. A. L.;
Hawthorne, M. F. J. Am. Chem. Soc. 1996, 118, 2679-2685.
Acknowledgment. This work was supported by the Hungarian
GVOP-3.2.1.-2004-04-0210/3.0, NAP VENEUS05 OMFB-00650/
JA064609X
9
12670 J. AM. CHEM. SOC. VOL. 128, NO. 39, 2006