2494
O. Beyer et al.
Paper
Synthesis
was removed under reduced pressure and the crude product was pu-
rified by column chromatography (silica gel, CH2Cl2–MeOH, 40:1; Rf =
0.40) to give 12 as yellow solid; yield: 13 mg (14%). Additionally, the
free axle 13 was isolated; yield: 31 mg (48%).
Axle 13
1H NMR (600 MHz, CD2Cl2): δ = 9.49 (s, 1 H, 2-PyH), 9.01 (br s, 1 H,
CONH), 8.99 (d, 3J = 6.1 Hz, 1 H, 6-PyH), 8.57 (d, 3J = 8.2 Hz, 1 H, 4-
PyH), 7.98 (dd, 3J = 8.2 Hz, 3J = 6.1 Hz, 1 H, 5-PyH), 7.63 (d, 3J = 8.6 Hz,
2 H, 2,6-Ar2H), 7.53 (d, 3J = 8.6 Hz, 2 H, 3,5-Ar2H), 7.36–7.24 (m, 13 H,
3,5-Ar5H, 3,5-Ar1H, 5-triazole-H), 7.24–7.17 (m, 12 H, 2,6-Ar5H, 2,6-
Ar1H), 6.80, 6.78 (2 s, 8 H, 2,3,5,6-Ar3H, 2,3,5,6-Ar4H), 5.68 (s, 2 H,
Py1CH2CONH), 4.28 [t, 3J = 7.2 Hz, 2 H, triazole-CH2(CH2)4CO2], 3.94 [t,
Rotaxane 12
1H NMR (600 MHz, CD2Cl2): δ = 8.49 (s, 1 H, 2-Py1H), 8.04 (d, 3J =
8.1 Hz, 1 H, 4-Py1H), 7.65 (d, 3J = 6.2 Hz, 1 H, 6-Py1H), 7.55 (dd, 3J =
8.1 Hz, 3J = 6.2 Hz, 1 H, 5-Py1H), 7.40 (d, 3J = 8.5 Hz, 2 H, 3,5-Ar2H),
7.33 (d, 3J = 8.7 Hz, 6 H, 3,5-Ar1H), 7.31–7.28 (m, 7 H, 5-triazole-H,
3,5-Ar5H), 7.25 (d, 3J = 8.7 Hz, 6 H, 2,6-Ar1H), 7.23–7.20 (m, 7 H,
CONH, 2,6-Ar5H), 7.16 (d, 3J = 8.5 Hz, 2 H, 2,6-Ar2H), 6.86 (d, 3J =
8.6 Hz, 4 H, 3,5-Ar6H), 6.86 (s, 2 H, 3,5-Py2H), 6.79 (d, 3J = 6.3 Hz, 8 H,
2,3,5,6-Ar3H, 2,3,5,6-Ar4H), 6.31 (d, 3J = 8.6 Hz, 4 H, 2,6-Ar6H), 4.92 (s,
2 H, Py1CH2CONH), 4.43–4.32 (m, 10 H, Py2CH2O, Ar6CH2O, Py2OCH2),
4.27 [t, 3J = 7.2 Hz, 2 H, triazole-CH2(CH2)4CO2], 3.93 [t, 3J = 6.2 Hz, 2 H,
Ar4OCH2(CH2)2-triazole], 3.91–3.85 [m, 6 H, CH2OAr3OCH2(CH2)4CH2OAr4],
3.80 (mc, 2 H, CO2CH2CH2), 3.72–3.64 (mc, 4 H, Ar6OCH2), 3.20–3.14
(m, 2 H, NHCH2), 2.91–2.81 [m, 4 H, Ar4O(CH2)2CH2-triazole,
3J
=
6.2 Hz, 2 H, Ar4OCH2(CH2)2-triazole], 3.91–3.88 [m, 4 H,
Ar3OCH2(CH2)4CH2OAr4], 3.86 [t, 3J = 6.5 Hz, 2 H, NH(CH2)5CH2OAr3],
3.81 (mc, 2 H, CO2CH2CH2), 3.25 (mc, 2 H, NHCH2CH2), 2.91–2.83 [m,
4 H, Ar4O(CH2)2CH2-triazole, CO2CH2CH2], 2.21 [t, J = 7.5 Hz, 2 H, tri-
3
azole-(CH2)4CH2CO2], 2.10 (mc, 2 H, Ar4OCH2CH2CH2-triazole), 1.87
[mc,
2 H,
triazole-CH2CH2(CH2)3CO2],
1.82–1.68
[m,
6 H,
CH2CH2OAr3OCH2CH2(CH2)2CH2CH2OAr4], 1.67–1.55 [m, 4 H, triazole-
(CH2)3CH2CH2CO2,
NHCH2CH2],
1.54–1.47
[m,
8 H,
NH(CH2)2CH2CH2(CH2)2OAr3O(CH2)2CH2CH2(CH2)2OAr4], 1.46–1.37 [m,
2 H, triazole-(CH2)2CH2(CH2)2CO2], 1.31, 1.30 [2 s, 54 H, 6 × C(CH3)3].
13C NMR (150 MHz, CD2Cl2): δ = 173.8 (s, CO2CH2), 164.2 (s, CONH),
153.9, 153.8, 153.7, 153.6 (4 s, 1,4-Ar3C, 1,4-Ar4C), 151.4 (s, 4-Ar2C)*,
149.5 (s, 4-Ar5C), 149.4 (s, 4-Ar1C), 147.7 (s, 4-triazole-C), 144.5 (s, 1-
Ar5C), 144.1 (s, 1-Ar1C), 143.9 (d, 2-PyC), 143.5 (d, 6-PyC), 143.2 (d, 4-
PyC), 141.5 (s, 3-PyC)*, 133.0 (d, 3,5-Ar2C), 131.0 (d, 2,6-Ar1C), 130.3
(s, 1-Ar2C), 129.0 (d, 2,6-Ar5C), 128.2 (d, 5-PyC), 127.0 (d, 2,6-Ar2C),
125.4 (d, 3,5-Ar1C), 125.2 (d, 3,5-Ar5C), 121.3 (d, 5-triazole-C), 115.9
(d, 2,3,5,6-Ar3C, 2,3,5,6-Ar4C), 69.1 [t, CH2OAr3OCH2(CH2)4CH2OAr4],
68.1 (t, Ar4OCH2CH2CH2-triazole), 64.6 [s, C(Ar1)3], 63.1 (t, PyCH2),
63.0 (t, CO2CH2CH2), 54.1 [s, C(Ar5)3], 50.4 [t, triazole-CH2(CH2)4CO2],
40.7 (t, NHCH2), 38.8 (t, CO2CH2CH2), 34.8, 34.8 [2 s, Ar1C(CH3)3,
Ar5C(CH3)3], 34.4 (t, CH2CO2), 31.6 [q, Ar1C(CH3)3, Ar5C(CH3)3],
30.6 [t, triazole-CH2CH2(CH2)3CO2], 29.9, 29.8, 29.7 [3 t,
CH2CH2OAr3OCH2CH2(CH2)2CH2CH2OAr4], 29.5 (t, Ar4OCH2CH2CH2-triazole),
29.2 (t, NHCH2CH2), 26.6 [t, NH(CH2)3CH2(CH2)2OAr3], 26.4 [t,
Ar3O(CH2)2CH2CH2(CH2)2OAr4], 26.3 [t, triazole-(CH2)2CH2(CH2)2CO2],
26.2 [t, NH(CH2)2CH2(CH2)3OAr3], 24.8 [t, triazole-(CH2)3CH2CH2CO2],
22.7 (t, Ar4OCH2CH2CH2-triazole). * Only visible in the HMBC spectra.
3
CO2CH2CH2], 2.65 (mc, 2 H, OCH2CH2CF2), 2.21 [t, J = 7.6 Hz, 2 H, tri-
azole-(CH2)4CH2CO2], 2.10 (mc, 2 H, Ar4OCH2CH2CH2-triazole), 1.85
[mc,
2 H,
triazole-CH2CH2(CH2)3CO2],
1.80–1.69
1.67–1.61
[m,
(m,
6 H,
4 H,
CH2CH2OAr3OCH2CH2(CH2)2CH2CH2OAr4],
Ar6OCH2CH2), 1.61–1.56 [m, 2 H, triazole-(CH2)3CH2CH2CO2], 1.52–
1.48 [m, 6 H, NHCH2CH2, Ar3O(CH2)2CH2CH2(CH2)2OAr4], 1.47–1.44
[m, 2 H, NH(CH2)3CH2(CH2)2OAr3], 1.41–1.38 [m, 4 H, Ar6O(CH2)2CH2],
1.37–1.34 [m, 2 H, NH(CH2)2CH2(CH2)3OAr3], 1.34–1.22 [m, 10 H,
Ar6O(CH2)3CH2CH2, triazole-(CH2)2CH2(CH2)2CO2], 1.30, 1.29 [2 s, 54 H,
6 × C(CH3)3].
13C NMR (150 MHz, CD2Cl2): δ = 173.8 (s, CO2CH2), 166.3 (s, 4-Py2C),
163.4 (s, CONH)*, 159.7 (s, 2,6-Py2C), 159.2 (s, 1-Ar6C), 153.9, 153.8,
153.7, 153.6 (4 s, 1,4-Ar3C, 1,4-Ar4C), 151.1 (s, 4-Ar2C)*, 149.5 (s, 4-
Ar1C), 149.4 (s, 4-Ar5C), 147.7 (s, 4-triazole-C), 144.7 (d, 2-Py1C),144.5
(s, 1-Ar5C), 144.3 (s, 1-Ar1C), 142.8 (d, 6-Py1C), 141.6 (d, 4-Py1C),
140.3 (s, 3-Py1C), 132.2 (d, 3,5-Ar2C), 130.9 (d, 2,6-Ar1C), 130.7 (d, 3,5-
Ar6C), 129.5 (s, 1-Ar2C), 129.3 (s, 4-Ar6C)*, 129.0 (d, 2,6-Ar5C), 126.9
(d, 2,6-Ar2C), 126.6 (s, 5-Py1C), 125.4 (d, 3,5-Ar5C), 125.3 (d, 3,5-Ar1C),
121.3 (d, 5-triazole-C), 118.3 (tF, Py2OCH2CH2CF2), 115.8 (d, 2,3,5,6-
Ar3C, 2,3,5,6-Ar4C), 114.6 (d, 2,6-Ar6C), 108.7 (d, 3,5-Py2C), 73.8 (t,
Ar6CH2O), 73.4 (t, Py2CH2O), 69.0, 68.9 [t, CH2OAr3OCH2(CH2)4CH2OAr4],
68.1 (t, Ar4OCH2CH2CH2-triazole), 67.8 (t, Ar6OCH2), 64.5 [s, C(Ar1)3],
63.0 (t, CO2CH2CH2), 62.2 (t, Py1CH2), 60.9 (t, Py2OCH2CH2CF2), 54.1 [s,
C(Ar5)3], 50.4 [t, triazole-CH2(CH2)4CO2], 40.7 (t, NHCH2), 38.8 (t,
CO2CH2CH2), 34.8, 34.8 [2 s, Ar1C(CH3)3, Ar5C(CH3)3], 34.4 (t, CH2CO2),
31.6 [q, Ar1C(CH3)3, Ar5C(CH3)3], 31.5 (t, Py2OCH2CH2CF2), 30.6 [t, tri-
azole-CH2CH2(CH2)3CO2], 29.9, 29.8 [2 t, OAr3OCH2CH2(CH2)2CH2CH2OAr4],
29.7 (t, Ar4OCH2CH2CH2-triazole), 29.6 [t, NH(CH2)4CH2CH2OAr3],
29.5 (t, NHCH2CH2), 29.2 [t(tF), Ar6OCH2CH2], 27.2 [t,
NH(CH2)2CH2(CH2)3OAr3], 26.5 [t, Ar6O(CH2)3CH2CH2], 26.4, 26.4 [2 t,
NH(CH2)3CH2(CH2)2OAr3, Ar3O(CH2)2CH2CH2(CH2)2OAr4], 26.3 [t,
Ar6O(CH2)2CH2], 24.8 [t, triazole-(CH2)3CH2CH2CO2], 23.3 [t, triazole-
MS (MALDI-TOF, Cl-CCA): m/z = 1670 [M – PF6]+.
Acknowledgment
The support of the Deutsche Forschungsgemeinschaft (SFB 677) is
greatfully acknowledged.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
o
nrtIo
g
f
rmoaitn
S
u
p
p
ortiInfogrmoaitn
*
(CH2)2CH2(CH2)2CO2], 22.7 (t, Ar4OCH2CH2CH2triazole). Only visible
References
in the HMBC spectra.
(1) Boyer, P. D. Biochim. Biophys. Acta (Bioenergetics) 1993, 1140,
215.
(2) Baudry, J.; Tajkhorshid, E.; Molnar, F.; Phillips, J.; Schulten, J.
J. Phys. Chem. B 2001, 105, 905.
(3) (a) Molecular Machines and Motors, In Topics in Current Chemis-
try; Vol. 354; Credi, A.; Silvi, S.; Venturi, M., Eds.; Springer-
Verlag: Berlin, 2014. (b) Balzani, V.; Credi, A.; Venturi, M. Molec-
ular Devices and Machines - Concepts and Perspectives for the
Nanoworld, 2nd ed.; Wiley-VCH: Weinheim, 2008. (c) Molecular
19F NMR (470 MHz, CD2Cl2): δ = –72.6 (d, 1JP = 711 Hz, 6 F, PF6), –81.1
(s, 3 F, CF3), –113.5 (s, 2 F, CH2CF2), –122.0 (s, 2 F, CH2CF2CF2), –123.0
(s, 2 F, CF2CF3), –123.7 (s, 2 F, CF2CF2CF3), –126.3 (s, 2 F, CH2CF2CF2CF2).
MS (MALDI-TOF, Cl-CCA): m/z = 2522 [M – PF6]+.
HRMS (FT-ICR, CH2Cl2–MeOH): m/z [M
151H184F13N6O122+: 1260.691; found: 1260.698.
– PF6 +
H]2+ calcd for
C
© Georg Thieme Verlag Stuttgart · New York — Synthesis 2015, 47, 2485–2495