A. Marinas et al. / Journal of Catalysis 221 (2004) 666–669
669
acceptors. The presence of fluorine bonded directly to the
References
α-carbon atom confers a strongly acidic character to the hy-
droxyl groups and an unusually high stability to the complex.
In our case the double interaction cannot be so strong due to
the weak acidity of the diol (pka = 13.4 [32]). On the other
hand, the single O–H–O-type interaction in Scheme 1b is
expected to be considerably weaker than the N–H–O inter-
action in Scheme 1a.
[1] Y. Orito, S. Imai, S. Niwa, J. Chem. Soc. Jpn. (1979) 1118.
[2] M. Studer, H.U. Blaser, C. Exner, Adv. Synth. Catal. 345 (2003) 45.
[3] P.B. Wells, A.G. Wilkinson, Top. Catal. 5 (1998) 39.
[4] A. Baiker, J. Mol. Catal. A 163 (2000) 205.
[5] M. Von Arx, T. Mallat, A. Baiker, Top. Catal. 19 (2002) 75.
[6] H.U. Blaser, H.P. Jalett, D.M. Monti, A. Baiker, J.T. Wehrli, Stud.
Surf. Sci. Catal. 67 (1991) 147.
[7] K.E. Simons, G. Wang, T. Heinz, A. Pfaltz, A. Baiker, Tetrahedron:
Asymmetry 6 (1995) 505.
[8] B. Minder, M. Schürch, T. Mallat, A. Baiker, T. Heinz, A. Pfaltz, J. Ca-
tal. 160 (1996) 261.
[9] M. Schürch, T. Heinz, R. Aeschimann, T. Mallat, A. Pfaltz, A. Baiker,
J. Catal. 173 (1998) 187.
[10] G. Wang, T. Heinz, A. Pfaltz, B. Minder, T. Mallat, A. Baiker, J. Chem.
Soc., Chem. Commun. (1994) 2047.
An attempt to confirm the structures in Scheme 1b or 1c
by NMR failed. Note that there is no NMR evidence yet for
the N–H–O-type hydrogen bond between the known chiral
modifiers and any of the activated ketones. However, very
recently this hydrogen bonding type could be evidenced for
the cinchonidine–ketopantolactone interaction using ATR
infrared concentration modulation spectroscopy [33].
[11] A. Solladié-Cavallo, C. Marsol, F. Garin, Tetrahedron Lett. 43 (2002)
4733.
[12] B. Minder, M. Schürch, T. Mallat, A. Baiker, Catal. Lett. 31 (1995)
143.
[13] A. Solladié-Cavallo, C. Marsol, C. Suteu, F. Garin, Enantiomer 6
(2001) 245.
4. Conclusions
A new chiral modifier of Pt, 1-naphthyl-1,2-ethanediol
(NED) has been found for the enantioselective hydrogena-
tion of activated ketones. At best, the NED–Pt/Al2O3 cata-
lyst system afforded 30% ee to (R)-(−)-pantolactone in the
hydrogenation of ketopantolactone at 5 bar and 0 ◦C. A re-
markable nonlinear effect was observed when mixtures of
(S)-NED and (R)-2-(1-pyrrolidinyl)-1-(1-naphthyl)ethanol
((R)-PNE) were applied as modifiers. This behavior is traced
to the stronger adsorption of PNE on Pt, likely due to the
stronger electronic attraction of the amino group to the Pt
surface. Two feasible models have been proposed for the
NED–substrate interaction involving O–H–O-type hydrogen
bonds.
Until now it was generally believed [2,4] that a cru-
cial feature of an effective chiral modifier of Pt is a basic,
aliphatic nitrogen atom for interacting with the activated
ketone substrate. Here we provide strong experimental evi-
dence against this hypothesis. Understanding the functioning
of the Pt–NED catalyst system may initiate new approaches
for tailor-made modifiers and broaden the scope of hetero-
geneous asymmetric catalysis.
[14] A. Tungler, T. Mathe, K. Fodor, R.A. Sheldon, P. Gallezot, J. Mol.
Catal. A 108 (1996) 145.
[15] G. Szöllösi, C. Somlai, P.T. Szabó, M. Bartók, J. Mol. Catal. A 170
(2001) 165.
[16] M. Bartók, K. Felföldi, B. Török, T. Bartók, Chem. Commun. (1998)
2605.
[17] A. Vargas, T. Bürgi, A. Baiker, J. Catal. 197 (2001) 378.
[18] S.P. Griffiths, P.B. Wells, K.G. Griffin, P. Johnston, in: F.E. Herkes
(Ed.), Catalysis of Organic Reactions, Dekker, New York, 1998, p. 89.
[19] P.B. Wells, R.P.K. Wells, in: D.E. De Vos, I.F.J. Vankelecom, P.A.
Jacobs (Eds.), Chiral Catalyst Immobilization and Recycling, Wiley–
VCH, Weinheim, 2000, p. 123.
[20] H.U. Blaser, H.P. Jalett, D.M. Monti, A. Baiker, J.T. Wehrli, Stud.
Surf. Sci. Catal. 67 (1991) 147.
[21] T. Heinz, PhD dissertation, University of Basel, 1997.
[22] M. Bartók, G. Szöllösi, K. Balázsik, T. Bartók, J. Mol. Catal. A 177
(2002) 299.
[23] W.R. Huck, T. Mallat, A. Baiker, Catal. Lett. 87 (2003) 241.
[24] K.E. Simons, P.A. Meheux, A. Ibbotson, P.B. Wells, Stud. Surf. Sci.
Catal. 75 (1993) 2317.
[25] A. Tungler, K. Fodor, T. Mathe, R.A. Sheldon, Stud. Surf. Sci.
Catal. 108 (1997) 157.
[26] W.R. Huck, T. Bürgi, T. Mallat, A. Baiker, J. Catal. 216 (2003) 276.
[27] W.R. Huck, T. Mallat, A. Baiker, Adv. Synth. Catal. 345 (2003) 255.
[28] V.A. Ranade, G. Consiglio, R. Prins, J. Org. Chem. 64 (1999) 8862.
[29] V.A. Ranade, G. Consiglio, R. Prins, J. Org. Chem. 65 (2000) 1132.
[30] R.A. Klein, J. Comput. Chem. 23 (2002) 585.
[31] W.J. Middleton, R.V. Lindsey Jr., J. Am. Chem. Soc. 86 (1964) 4948.
[32] Data taken from Scifinder Scholar 2001. American Chemical Society,
calculated using Advanced Chemistry Development (ACD) Software
Solaris V4.67.
Acknowledgments
Financial support by the Swiss National Science Founda-
tion is gratefully acknowledged. A. Marinas is thankful to
Fundación Ramón Areces for a postdoctoral grant.
[33] N. Bonalumi, T. Bürgi, A. Baiker, J. Am. Chem. Soc. 125 (2003)
13342.