Angewandte Chemie International Edition
10.1002/anie.201711761
COMMUNICATION
spectrum to further improve hydrogen evolution efficiency in 5b.
[4] a) M. C. Lipke, T. Cheng, Y. Wu, H. Arslan, H. Xiao, M. R. Wasielewski, W.
A. Goddard, J. F. Stoddart, J. Am. Chem. Soc. 2017, 139, 3986-3998; b)
W. G. Santos, D. S. Budkina, V. M. Deflon, A. N. Tarnovsky, D. R. Cardoso,
M. D. E. Forbes, J. Am. Chem. Soc. 2017, 139, 7681-7684.
Thus, the subtle electron properties, the faster formation of radical
species and electron-transfer rates[23b] led to higher AQY and
increased hydrogen generation of Se-BnV2+ (5b) than Te-BnV2+
[
5] a) K. Kitamoto, K. Sakai, Chem. Commun. 2016, 52, 1385-1388; b) H. Lu,
R. Hu, H. Bai, H. Chen, F. Lv, L. Liu, S. Wang, H. Tian, ACS Appl. Mater.
Interfaces. 2017, 9, 10355-10359.
(
5c). The hydrogen generation of 5b exhibits decent cycle stability
due to the simplified catalytic process (Figure S27).
[
6] a) T. Janoschka, S. Morgenstern, H. Hiller, C. Friebe, K. Wolkersdorfer, B.
Haupler, M. D. Hager, U. S. Schubert, Polym. Chem. 2015, 6, 7801-7811;
b) T. Janoschka, N. Martin, M. D. Hager, U. S. Schubert, Angew. Chem. Int.
Ed. 2016, 55, 14427-14430; c) B. Hu, C. DeBruler, Z. Rhodes, T. L. Liu, J.
Am. Chem. Soc. 2017, 139, 1207-1214; d) S. M. Beladi-Mousavi, S. Sadaf,
A. M. Mahmood, L. Walder, ACS Nano 2017, 11, 8730-8740.
[
[
7] a) G. Xu, G. Guo, M. Wang, Z. Zhang, W. Chen, J. Huang, Angew. Chem.
Int. Ed. 2007, 46, 3249-3251; b) G. Das, T. Skorjanc, S. K. Sharma, F.
Gándara, M. Lusi, D. S. Shankar Rao, S. Vimala, S. Krishna Prasad, J.
Raya, D. S. Han, R. Jagannathan, J.-C. Olsen, A. Trabolsi, J. Am. Chem.
Soc. 2017, 139, 9558-9565.
8] a) W. W. Porter, T. P. Vaid, A. L. Rheingold, J. Am. Chem. Soc. 2005, 127,
16559-16566; b) L. Pospíšil, L. Bednárová, P. Štěpánek, P. Slavíček, J.
Vávra, M. Hromadová, H. Dlouhá, J. Tarábek, F. Teplý, J. Am. Chem. Soc.
2014, 136, 10826-10829; c) E. G. Hohenstein, J. Am. Chem. Soc. 2016,
138, 1868-1876.
[
[
9] a) G. He, O. Shynkaruk, M. W. Lui, E. Rivard, Chem. Rev. 2014, 114, 7815-
880; b) X.-Y. Wang, H.-R. Lin, T. Lei, D.-C. Yang, F.-D. Zhuang, J.-Y.
7
Wang, S.-C. Yuan, J. Pei, Angew. Chem. Int. Ed. 2013, 125, 3199-3202; c)
Y. Ren, T. Baumgartner, J. Am. Chem. Soc. 2011, 133, 1328-1340.
10] a) S. Durben, T. Baumgartner, Angew. Chem. Int. Ed. 2011, 50, 7948-7952;
b) M. Stolar, J. Borau-Garcia, M. Toonen, T. Baumgartner, J. Am. Chem.
Soc. 2015, 137, 3366-3371; c) C. Reus, M. Stolar, J. Vanderkley, J.
Nebauer, T. Baumgartner, J. Am. Chem. Soc. 2015, 137, 11710-11717.
11] T. W. Greulich, E. Yamaguchi, C. Doerenkamp, M. Lübbesmeyer, C. G.
Daniliuc, A. Fukazawa, H. Eckert, S. Yamaguchi, A. Studer, Chem. Eur. J.
Figure 3. (a) Schematic diagram for photoinduced hydrogen production from
water. (b) Time-dependent hydrogen generation from aqueous solution under
xenon lamp. (c) Total hydrogen generation of active components; changed
colors as the time go by under xenon lamp are shown as insets.
[
[
2
017, 23, 6029-6033.
12] a) A. C. Benniston, J. Hagon, X. He, S. Yang, R. W. Harrington, Org. Lett.
012, 14, 506-509; b) G. B. Hall, R. Kottani, G. A. Felton, T. Yamamoto, D.
In conclusion, a series of novel chalcogenoviologens were
successfully synthesized by combining the viologen with
chalcogenophenes. By introducing different chalcogen atoms (S,
Se and Te), the HOMO−LUMO band gaps narrowed gradually,
along with increased HOMO levels, which caused the red-shift of
absorptions to the visible range. The multiple redox peaks were
found (especially for 5c), which were promising in many electron-
related fields. The proof-of-concept solution-based/gel-based
ECD were fabricated successfully and their electrochemical
performance was studied in situ. These results lay a solid
foundation for flexible low-voltage electrochromic devices and
relevant research is in progress. In addition, the water-soluble Se-
2
H. Evans, R. S. Glass, D. L. Lichtenberger, J. Am. Chem. Soc. 2014, 136,
4012-4018.
[
[
13] L. Striepe, T. Baumgartner, Chem. Eur. J. 2017, 23, 16924-16940.
14] J. Ohshita, K. Murakami, D. Tanaka, Y. Ooyama, T. Mizumo, N. Kobayashi,
H. Higashimura, T. Nakanishi, Y. Hasegawa, Organometallics 2014, 33,
517-521.
[
[
15] A. N. Woodward, J. M. Kolesar, S. R. Hall, N.-A. Saleh, D. S. Jones, M. G.
Walter, J. Am. Chem. Soc. 2017, 139, 8467-8473.
16] T. Park, C. Park, B. Kim, H. Shin, E. Kim, Energy Environ. Sci. 2013, 6,
788-792.
[17] a) P.-F. Li, T. B. Schon, D. S. Seferos, Angew. Chem. Int. Ed. 2015, 54,
9361-9366; b) M. Planells, B. C. Schroeder, I. McCulloch, Macromolecules
BnV2 (5b) and Te-BnV (5c) were first used as both a
+
2+
2014, 47, 5889-5894.
photosensitizer and as an electron mediator for visible-light-driven
hydrogen evolution due to their high visible light absorption and
[
[
18] G. Delogu, D. Fabbri, M. A. Dettori, A. Forni, G. Casalone, Tetrahedron:
Asymmetry 2001, 12, 1451-1458.
optimal energy levels, which provide
a new strategy for
19] G. He, L. Kang, W. Torres Delgado, O. Shynkaruk, M. J. Ferguson, R.
McDonald, E. Rivard, J. Am. Chem. Soc. 2013, 135, 5360-5363.
20] H. Sashida, M. Kaname, K. Ohyanagi, Heterocycles 2010, 82, 441-447.
21] a) L. H. Klemm, D. R. McCoy, C. E. Klopfenstein, J. Heterocycl. Chem.
developing organic photocatalysts. Research on other
applications of chalcogenoviologens is currently underway.
[
[
1
971, 8, 383-389; b) M. I. Attalla, L. A. Summers, J. Heterocycl. Chem.
985, 22, 751-752.
Keywords: viologen • chalcogenoviologens • electrochromism •
visible region • hydrogen evolution
1
[
[
22] A. Launikonis, A. W. H. Mau, W. H. F. Sasse, L. A. Summers, J. Chem.
Soc., Chem. Commun. 1986, 1645-1647.
[
[
1] L. A. Vermeulen, M. E. Thompson, Nature 1992, 358, 656-658.
23] a) A. J. Esswein, D. G. Nocera, Chem. Rev. 2007, 107, 4022-4047; b) L. Li,
R. G. Hadt, S. Yao, W.-Y. Lo, Z. Cai, Q. Wu, B. Pandit, L. X. Chen, L. Yu,
Chem. Mater. 2016, 28, 5394-5399.
2] E. Hwang, S. Seo, S. Bak, H. Lee, M. Min, H. Lee, Adv. Mater. 2014, 26,
5129-5136.
[
3] a) H. Li, D.-X. Chen, Y.-L. Sun, Y. B. Zheng, L.-L. Tan, P. S. Weiss, Y.-W.
Yang, J. Am. Chem. Soc. 2013, 135, 1570-1576; b) B. Yuan, J. Xu, C. Sun,
H. Nicolas, M. Schönhoff, Q. Yang, X. Zhang, ACS Appl. Mater. Interfaces.
[
24] M. Kobayashi, S. Masaoka, K. Sakai, Angew. Chem. Int. Ed. 2012, 51,
7431-7434.
2016, 8, 3679-3685.
This article is protected by copyright. All rights reserved.