Hydrogen-Bonding-Induced Electron Transfer
J. Phys. Chem., Vol. 100, No. 2, 1996 679
and 3DENA* (54.0 and 51.0 kcal/mol, respectively, see Table1).
The ∆Get values were calculated to be 4.1 kcal/mol for DMNA
and 7.1 kcal/mol for DENA by eq 13. These positive values
of ∆Get usually predict little probability of electron transfer.
However, electron transfer assisted by hydrogen bonding was
observed in the present system. As mentioned above, the charge
(11) (a) Bensasson, R.; Land, E. J. Trans. Faraday Soc. 1971, 67, 1904.
(b) Amand, B.; Bensasson, R. Chem. Phys. Lett. 1975, 34, 44.
(12) Kobashi, H.; Morita, T.; Mataga, N. Chem. Phys. Lett. 1973, 20,
376.
(13) Strambini, G. B.; Galley, W. C. J. Chem. Phys. 1975, 63, 3467.
(14) Anderson Jr., R. W.; Hochstrasser, R. M.; Lutz, H.; Scott, G. W.
J. Chem. Phys. 1974, 61, 2500.
(15) Gessner, F.; Scaiano, J. C. J. Am. Chem. Soc. 1985, 107, 7206.
(16) Closs, G. L.; Piotrowiak, P.; MacInnis, J. M.; Fleming, G. R. J.
Am. Chem. Soc. 1988, 110, 2652.
(17) Engel, P. S.; Horsey, D. W.; Scholz, J. N.; Karatsu, T.; Kitamura,
H. J. Phys. Chem. 1992, 96, 7524.
(18) Haggquist, G. W.; Katayama, H.; Tsuchida, A.; Ito, S.; Yamamoto,
M. J. Phys. Chem. 1993, 97, 9270.
(19) (a) Wilson, T.; Frye, S.; Halpern, A. M. J. Am. Chem. Soc. 1984,
106, 3600. (b) Indig, G. C.; Catalani, L. H.; Wilson, T. J. Phys. Chem.
1992, 96, 8967.
(20) Birks, J. B. Photophysics of Aromatic Molecules; Wiley: New York,
1970.
3
density on the carbonyl group of BP in (DANA‚‚‚BP)* is
considered to be reduced upon hydrogen bonding of ROH.
3
Consequently, the electron affinity of BP in (DANA‚‚‚BP)H*B
3
should increase compared with that of BP in (DANA‚‚‚BP)*.
In addition, the radical ions formed are stabilized by solvation
of ROH (H2O or MeOH), resulting in a decrease of ∆Get. This
intraexciplex electron transfer may be interpreted by a thermo-
neutral or a slightly endothermic process.
(21) Turro, N. J. Molecular Photochemistry; Benjamin/Cummings:
Menlo Park, CA, 1978.
Concluding Remarks
(22) Shizuka, H.; Fukushima, M. Chem. Phys. Lett. 1983, 101, 598.
(23) Shizuka, H.; Hagiwara, H.; Satoh, H.; Fukushima, M. J. Chem.
Soc., Chem. Commun. 1985, 1454.
(24) Shizuka, H.; Hagiwara, H.; Fukushima, M. J. Am. Chem. Soc. 1985,
107, 7816.
(25) Kohno, S.; Hoshino, M.; Shizuka, H. J. Phys. Chem. 1991, 95,
5489.
(26) Kaneko, S.; Yamaji, M.; Hoshino, M.; Shizuka, H. J. Phys. Chem.
1992, 96, 8028.
(27) Sekiguchi, T.; Yamaji, M.; Tatemitsu, H; Sakata, Y.; Shizuka, H.
J. Phys. Chem. 1993, 97, 7003.
(28) Yamaji, M.; Sekiguchi, T.; Hoshino, M.; Shizuka, H. J. Phys. Chem.
1992, 96, 9353.
(29) Shizuka, H.; Yamaji, M. Proc. Indian Acad. Sci. (Chem. Sci.) 1993,
105, 747.
(30) Yamaji, M.; Tamura, K.; Shizuka, H. J. Chem. Soc., Faraday Trans.
1994, 90. 533.
(31) Yamaji, M.; Aihara, Y.; Itoh, T.; Tobita, S.; Shizuka, H. J. Phys.
Chem. 1994, 98, 7014.
(32) Yamaji, M.; Kiyota, T.; Shizuka, H. Chem. Phys. Lett. 1994, 226,
199.
(33) Zweig, A.; Maurer, A. H.; Roberts, B. G. J. Org. Chem. 1967, 32,
1322.
(34) Chen, E. C. M.; Wentworth, W. E. J. Chem. Phys. 1975, 63, 3183.
(35) (a) Yanagidate, M.; Takayama, K.; Takeuchi, M.; Nishimura, J.;
Shizuka, H. J. Phys. Chem. 1993, 97, 8881. (b) Suzuki, T.; Kajii, Y.;
Shibuya, K.; Obi, K. Res. Chem. Intermediates 1991, 15, 261; Chem. Phys.
1992, 161, 447.
By means of laser flash photolysis techniques at 355 nm, the
photochemical reactions of the BP-dialkylnaphthylamine sys-
tem in ACN at 295 K with and without H2O or MeOH are
revealed as follows:
(1) Regardless of the presence of H2O or MeOH, the triplet
exciplex 3(DANA‚‚‚BP)* between 3DANA* and BP is formed
after triplet energy transfer from 3BP* to DANA. In the
presence of H2O or MeOH, the intraexciplex electron transfer
takes place effectively in the hydrogen bonded exciplex,
3(DANA‚‚‚BP)H*B to give DANA•+ and BP•-. The mechanism
for the production of DANA•+ + BP•- is shown in Scheme 2.
(2) The equilibrium constants K2 for the formation of
3(DANA‚‚‚BP)H*B with H2O and MeOH obtained are 0.55 and
0.45 M-1 for DMNA and 0.50 and 0.40 M-1 for DENA,
respectively. The rate constants ket for the intraexciplex electron
transfer induced by hydrogen bonding by both H2O and MeOH
are determined to be 2.5 × 107 s-1 for DMNA and 1.4 × 107
s-1 for DENA.
(3) According to our interpretation, electron transfer in
3(DANA‚‚‚BP)H*B occurs due to an increase in electron affinity
3
of BP in (DANA‚‚‚BP)* by hydrogen bonding.
(36) Meech, S. R.; O’Connor, D. V.; Phillips, D. J. Chem. Soc., Faraday
Trans. 2 1983, 79, 1563.
(37) Murov, S. L.; Carmichael, I.; Hug, G. L. Handbook of Photochem-
istry, 2nd ed.; Marcel Dekker: New York, 1993.
(38) Bensasson, R. V.; Gramain, J. C. J. Chem. Soc., Faraday Trans. 1
1980, 76, 1801.
(39) The transient absorption spectra observed after direct laser excitation
of DMNA and DENA at 308 nm (XeCl excimer laser) in ACN decayed
uniformly in the range 350-750 nm and were quenched effectively by
dissolved oxygen.
(40) Yamaji, M.; Kiyota, T.; Kimura, S.; Shizuka, H. Chem. Phys. Lett.
1995, 237, 419.
(41) Yamaji, M.; Tanaka, T.; Shizuka, H. Chem. Phys. Lett. 1993, 202,
191.
(42) The molar absorption coefficient and absorption spectrum of
DENA•+ were determined by the same method obtained those of DMNA•+
in ref 32.
(43) Cramer, L. E.; Spears, K. G. J. Am. Chem. Soc. 1978, 100, 221.
(44) Isaacs, N. S. Physical Organic Chemistry; John Wiley & Sons,
Inc.: New York, 1987; p 211.
Acknowledgment. This work was supported by a Grant-
in-Aid on Priority-Area-Research: Photoreaction Dynamics
(06239101) from the Ministry of Education, Science and Culture
of Japan. The authors thank Mr. K. Shima for his assistance
with the synthesis of DENA.
References and Notes
(1) (a) This paper is dedicated to the late Professor Paul de Mayo,
FRS, of the University of Western Ontario in memory of his contribution
to the development of photochemistry. (b)This work was presented at the
XVth IUPAC Symposium on Photochemistry, July, 1994, Prague, Czech
Republic.
(2) Terenin, A.; Ermolaev, V. Trans. Faraday Soc. 1956, 52, 1042.
(3) Dexter, D. L. J. Phys. Chem. 1953, 21, 836.
(4) Inokuti, M.; Hirayama, F. J. Chem. Phys. 1965, 42, 1978.
(5) (a) Porter, G.; Wilkinson, F. Proc. R. Soc. (London) 1961, A264,
1. (b) Wilkinson, F. AdV. Photochem. 1964, 3, 241.
(6) Moore, W. M ; Ketchum, M. J. Am. Chem. Soc. 1962, 84, 1368.
(7) (a) Lamola, A. A.; Leermarkers, P. A.; Byers, G. W.; Hammond,
G. S. J. Am. Chem. Soc. 1965, 87, 2322. (b) Herkstroeter, W. G.; Jones, L.
B.; Hammond, G. S. J. Am. Chem. Soc. 1966, 88, 4777.
(8) Smaller, B.; Avery, E. C.; Remko, J. R. J. Chem. Phys. 1965, 43,
922.
(9) (a) Wagner, P. J. J. Am. Chem. Soc. 1967, 89, 5715. (b) Wagner,
P. J.; Kochever, I. J. Am. Chem. Soc. 1968, 90, 2232. (c) Wagner, P. J.;
McGrath, J. M.; Zepp, R. G. J. Am. Chem. Soc. 1972, 94, 6883.
(10) Sandros, K. Acta. Chem. Scand. 1969, 23, 2815.
(45) Miyasaka, H.; Tabata, A.; Kamada, K.; Mataga, N. J. Am. Chem.
Soc. 1993, 115, 7335.
(46) Tanaka, H.; Nishimoto, K. J. Phys. Chem. 1984, 88, 1052.
(47) Turro, C.; Chang, C. K.; Leroi, G. E.; Cukier, R. I.; Nocera, D. G.
J. Am. Chem. Soc. 1992, 114, 4013.
(48) Wagner, P. J.; Truman, R. .; Punchlaski, A. E.; Wake, R. J. Am.
Chem. Soc. 1986, 108, 7727.
(49) Weller, A. Z. Phys. Chem. (Munich) 1982, 133, 93.
JP9523940