6
Z. Yaseen et al. / Journal of Molecular Liquids xxx (2014) xxx–xxx
(a)
(b)
Fig. 5. Poses of molecular docked model of 12-E2-12 Gemini surfactant with DNA [dodecamer duplex of sequence d(CGCGAATTCGCG)2 (PDB ID: 1BNA)].
[5] I. Badea, R. Verrall, M. Baca-Estrada, S. Tikoo, A. Rosenberg, P. Kumar, M. Foldvari, J. 421
385 surfactants and DNA. We see that there is a mutual complement be-
386 tween spectral techniques and molecular modeling, which provides
387 valuable information about the mode of interaction of the Gemini sur-
388 factants with DNA.
Gene. Med. 7 (2005) 1200–1214.
[6] A. Bhadani, S. Singh, Langmuir 25 (2009) 11703–11712.
422
423
[7] A.M. Aberle, F. Tablin, J. Zhu, N.J. Walker, D.C. Gruenert, M.H. Nantz, Biochemistry 37 424
(1998) 6533–6540. 425
[8] A. Roosjen, J. Smisterova, C. Driessen, J.T. Ers, A. Wagenaar, D. Hoekstra, R. Hulst, J.B. 426
F.N. Engberts, Eur. J. Org. Chem. 7 (2002) 1271–1277. 427
[9] D. Pijper, E. Bulten, J. Smisterova, A. Wagenaar, D. Hoekstra, J.B.F.N. Engberts, R. 428
Hulst, Eur. J. Org. Chem. 22 (2003) 4406–4412. 429
[10] C.A.H. Prata, Y. Zhao, P. Barthelemy, Y. Li, D. Luo, T.J. McIntosh, S.J. Lee, M.W. 430
Grinstaff, J. Am. Chem. Soc. 126 (2004) 12196–12197. 431
[11] M. Rajesh, J. Sen, M. Srujan, K. Mukherjee, B. Sreedhar, A. Chaudhuri, J. Am. Chem. 432
Soc. 129 (2007) 11408–11420. 433
[12] C. McGregor, C. Perrin, M. Monck, P. Camilleri, A.J. Kirby, J. Am. Chem. Soc. 123 434
(2001) 6215–6220. 435
[13] L. Karlsson, M.C.P. van Eijk, O. Soderman, J. Colloid Interface Sci. 252 (2002) 436
389 4. Conclusions
390
The present work reports a study of the interaction of diester bonded
391 cationic Gemini surfactants with DNA. Intercalation ability of ethidium
392 bromide decreases in presence of the Gemini surfactants in ethidium
393 bromide exclusion assay, which indicates the compaction potential of
394 Gemini surfactants. This is also in agreement with the results obtained
395 from gel electrophoresis. The outcome from circular dichroism mea-
396 surements establishes that the Gemini surfactants interact with DNA
397 in a groove binding fashion. These Gemini surfactants show chain
398 length dependent binding capability as evidenced by fluorescence, elec-
399 trophoresis and CD studies. The extent of interaction with DNA in case
400 of 14-E2-14 is more as compared to 12-E2-12 and 16-E2-16. Due to
401 the presence of positive charge on the head groups of Gemini surfac-
402 tants, electrostatic binding of these self-organizing molecules to the an-
403 ionic DNA phosphate is facilitated. Although the binding leads to
404 entropy loss that is compensated due to hydrophobic interaction be-
405 tween the alkyl tails of surfactant, results in compaction of DNA are
406 also revealed from DLS study. Large negative values of binding energy
407 evaluated from molecular docking shed light on the possibility of hydro-
408 gen bonding also between the ester group of Gemini surfactants and
409 nitrogenous bases of DNA.
290–296.
437
438
[14] D. Uhrikova, G. Rapp, P. Balgavy, Bioelectrochemistry 58 (2002) 87–95.
[15] X. Chen, J. Wang, N. Shen, Y. Luo, L. Li, M. Liu, R.K. Thomas, Langmuir 18 (2002) 439
6222–6228.
440
[16] P.C. Bell, M. Bergsma, I.P. Dolbnya, W. Bras, M.C.A. Stuart, A.E. Rowan, M.C. Feiters, J.
B.F.N. Engberts, J. Am. Chem. Soc. 125 (2003) 1551–1558.
[17] A.J. Kirby, P. Camilleri, J.B.F.N. Engberts, M.C. Feiters, R.J.M. Nolte, O. Soderman, M.
Bergsma, P.C. Bell, M.L. Fielden, C.L. Garcıa Rodrıguez, P. Guedat, A. Kremer, C.
McGregor, C. Perrin, G. Ronsin, M.C.P. van Eijk, Angew. Chem. Int. Ed. 42 (2003)
1448–1457.
[18] G. Zhinong, T. Shuxin, Z. Qi, Z. Yu, L. Bo, H. Li, Yushuw, T. Xiaoyan, Wuhan Univ, J. Q4
Natural Sci. 13 (2008) 227–231.
[19] N. Fatma, W.H. Ansari, M. Panda, Kabir-ud-Din, Z. Phys. Chem. 227 (2013) 133–149. Q5
[20] W.H. Ansari, N. Fatma, M. Panda, Kabir-ud-Din, Soft Matter 9 (2013) 1478–1487.
[21] N. Fatma, W.H. Ansari, M. Panda, Kabir-ud Din, J. Surfactant Deterg. 16 (2013)
609–620.
[22] R. Zana, J. Xia (Eds.), Surfactant Science Series, 117, Marcel Dekker, 2004.
[23] C.V. Kumar, E.H. Asuncion, J. Am. Chem. Soc. 115 (1993) 8547–8553.
[24] D. Mustard, D.W. Ritchie, Proteins Struct. Funct. Bioinforma. 60 (2005) 269–274.
[25] D. Schneidman-Duhovny, Y. Inbar, R. Nussinov, H.J. Wolfson, Nucleic Acids Res. 33
(2005) 363–367.
Q6
[26] W.L. DeLano, The PyMOL Molecular Graphics System, DeLano Scientific, San Carlos,
CA, USA, 2002.
410 Acknowledgements
[27] L.S. Lerman, Proc. Natl. Acad. Sci. 49 (1963) 94–102.
[28] Y. Han, Y. Wang, Phys. Chem. Chem. Phys. 13 (2011) 1939–1956.
[29] S.M. Melnikov, V.G. Sergeyev, K. Yoshikawa, J. Am. Chem. Soc. 117 (1995)
9951–9956.
411
KU thanks UGC, New Delhi, for the award of UGC-BSR Faculty
412 Fellowship and Z Y acknowledges the UGC for awarding JRF. We also
413 thank the Advanced Instrumentation Research Facility, Jawaharlal
414 Nehru University (JNU), New Delhi, for helping us in carrying out the
415 CD experiments.
[30] N.J. Greenfield, Nat. Protoc. 1 (2006) 2876–2890.
[31] S.M. Kelly, N.C. Price, Biochim. Biophys. Acta 1338 (1997) 161–185.
[32] K.E. Van Holde, W.C. Johnson, P.S. Ho, Principles of Physical Biochemistry, Prentice
Hall, New York, 1998.
[33] B.J. Berne, R. Pecora, Biology and Physics, Dover, New York, 2000.
[34] R.S. Dias, J. Innerlohinger, O. Glatter, M.G. Miguel, B. Lindman, J. Phys. Chem. B 109
(2005) 10458.
416 References
417
418
419
420
[1] M.A. Mintzer, E.E. Simanek, Chem. Rev. 109 (2009) 259–302.
[2] S. Lehrman, Nature 401 (1999) 517–518.
[3] H. Pearson, Nature 403 (2000) 9.
[35] L. Guldbrand, B. Jonsson, H. Wennerstrom, P. Linse, J. Chem. Phys. 80 (1984)
2221–2228.
[36] M.O. Khan, S.M. Melnikov, B. Jonsson, Macromolecules 32 (1999) 8836–8840.
[4] E. Olkowska, Z. Polkowska, J. Namiesnik, Chem. Rev. 111 (2011) 5667–5700.