Journal of the American Chemical Society
Article
N. Chem. Rev. 2005, 105, 2227−2252. (g) Kryatov, S. V.; Rybak-
Akimova, E. V.; Schindler, S. Chem. Rev. 2005, 105, 2175−2226.
(h) Kovaleva, E. G.; Lipscomb, J. D. Nat. Chem. Biol. 2008, 4, 186−
193. (i) He, P.; Moran, G. R. Curr. Opin. Chem. Biol. 2009, 13, 443−
450. (j) Ray, K.; Pfaff, F. F.; Wang, B.; Nam, W. J. Am. Chem. Soc.
2014, 136, 13942−13958. (k) Solomon, E. I.; Heppner, D. E.;
Johnston, E. M.; Ginsbach, J. W.; Cirera, J.; Qayyum, M.; Kieber-
Emmons, M. T.; Kjaergaard, C. H.; Hadt, R. G.; Tian, L. Chem. Rev.
2014, 114, 3659−3853. (l) Shaik, S.; Hirao, H.; Kumar, D. Nat. Prod.
Rep. 2007, 24, 533−552.
substrate to form a ring-structure analogous to I1 reported
above. This step, however, is not rate determining and the
following dioxygen bond cleavage is higher in energy.9b As a
consequence, changes in the rate-determining step and the
nature of the substrate and cofactor, will drive the reaction
differently.
CONCLUSIONS
■
We present a combined experimental and computational study
into the catalytic mechanism of MHQ dioxygenation by a
cofactor-free dioxygenase. Using spectroscopic and kinetic
studies we investigated substrate and substrate analogues
conversion to products using wt and active site variants.
These studies established key roles of a number of active site
residues, namely, His251, Asp126, Ser101 and Trp160. Thus, an
active site dyad of His251/Asp126 deprotonates the substrate,
which make it susceptible for C−O bond formation and later
electron transfer. The substrate is further stabilized into the
binding pocket through hydrogen bonding interactions with a
number of residues that hold it in the ideal orientation and
assist with C−O bond formation and electron transfer
pathways. Finally, computational modeling establishes what
the rate-determining step in the mechanism is and how it is
affected by changes to the substrate, i.e., replacing methyl by n-
butyl, fluoride, etc. A valence bond model explains the obtained
mechanisms and predicts that the addition of a cofactor to the
active site will not benefit the reaction mechanism and most
likely will slow the reaction down.
(2) (a) Platten, M.; von Knebel Doeberitz, N.; Oezen, I.; Wick, W.;
Ochs, K. Front. Immunol. 2014, 5, 673−673. (b) Prendergast, G. C.;
Smith, C.; Thomas, S.; Mandik-Nayak, L.; Laury-Kleintop, L.; Metz,
R.; Muller, A. J. Cancer Immunol. Immunother. 2014, 63, 721−735.
(c) Munn, D. H.; Mellor, A. L. Trends Immunol. 2013, 34, 137−143.
(d) Sikalidis, A. K. Pathol. Oncol. Res. 2015, 21, 9−17.
(3) Prescott, A. G.; John, P. Annu. Rev. Plant. Physiol. Plant. Mol. Biol.
1996, 47, 245−271.
(4) (a) Gibson, D. T.; Parales, R. E. Curr. Opin. Biotechnol. 2000, 11,
236−243. (b) Karlsson, A.; Parales, J. V.; Parales, R. E.; Gibson, D. T.;
Eklund, H.; Ramaswamy, S. Science 2003, 299, 1039−1042.
(5) (a) Bugg, T. D. H. Tetrahedron 2003, 59, 7075−7101. (b) de
Visser, S. P., Kumar, D., Eds.; Iron-Containing Enzymes: Versatile
Catalysts of Hydroxylation Reactions in Nature; RCS Publishing:
Cambridge, U.K., 2011. (c) Diaz, E.; Jimenez, J. I.; Nogales, J. Curr.
Opin. Biotechnol. 2013, 24, 431−442. (d) Blomberg, M. R. A.;
Borowski, T.; Himo, F.; Liao, R.-Z.; Siegbahn, P. E. M. Chem. Rev.
2014, 114, 3601−3658.
(6) (a) Groce, S. L.; Lipscomb, J. D. Biochemistry 2005, 44, 7175−
7188. (b) Walsh, T. A.; Ballou, D. P.; Mayer, R.; Que, L., Jr. J. Biol.
Chem. 1983, 258, 4422−4427.
(7) (a) Vaillancourt, F. H.; Barbosa, C. J.; Spiro, T. G.; Bolin, J. T.;
Blades, M. W.; Turner, R. F. B.; Eltis, L. D. J. Am. Chem. Soc. 2002,
124, 2485−2496. (b) Davis, M. I.; Orville, A. M.; Neese, F.; Zaleski, J.
M.; Lipscomb, J. D.; Solomon, E. I. J. Am. Chem. Soc. 2002, 124, 602−
614.
(8) (a) Kovaleva, E. G.; Lipscomb, J. D. Science 2007, 316, 453−457.
(b) Knoot, C. J.; Purpero, V. M.; Lipscomb, J. D. Proc. Natl. Acad. Sci.
U. S. A. 2015, 112, 388−393.
(9) (a) Deeth, R. J.; Bugg, T. D. H. J. Biol. Inorg. Chem. 2003, 8, 409−
418. (b) Borowski, T.; Siegbahn, P. E. M. J. Am. Chem. Soc. 2006, 128,
12941−12953.
(10) Fetzner, S.; Steiner, R. A. Appl. Microbiol. Biotechnol. 2010, 86,
791−804.
(11) (a) Bauer, I.; Max, N.; Fetzner, S.; Lingens, F. Eur. J. Biochem.
1996, 240, 576−583. (b) Steiner, R. A.; Janssen, H. J.; Roversi, P.;
Oakley, A. J.; Fetzner, S. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 657−
662. (c) Thierbach, S.; Bui, N.; Zapp, J.; Chhabra, S. R.; Kappl, R.;
Fetzner, S. Chem. Biol. 2014, 20, 1−9.
(12) (a) Frerichs-Deeken, U.; Ranguelova, K.; Kappl, R.;
Huttermann, J.; Fetzner, S. Biochemistry 2004, 43, 14485−14499.
(b) Frerichs-Deeken, U.; Fetzner, S. Curr. Microbiol. 2005, 51, 344−
ASSOCIATED CONTENT
* Supporting Information
■
S
Table with kinetics and computational data, as well as Schemes
and Figures with kinetic, spectroscopic and computational
results. We also provide Cartesian coordinates of optimized
DFT structures. The Supporting Information is available free of
AUTHOR INFORMATION
Corresponding Authors
Notes
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research was supported by the BBSRC, which is thanked
for support via grant number BB/I020543/1 (SdV & NSS),
BB/I020411/1 (RAS) as well as for a DTP studentship to
MGQ. The EPSRC is thanked for an Established Career
Fellowship to NSS. The National service of Computational
Chemistry Software (NSCCS) is thanked for additional CPU
time.
́
352. (c) Hernandez-Ortega, A.; Quesne, M. G.; Bui, S.; Heuts, D.;
Steiner, R. A.; Heyes, D. J.; de Visser, S. P.; Scrutton, N. S. J. Biol.
Chem. 2014, 289, 8620−8632.
(13) (a) de Visser, S. P.; Quesne, M. G.; Martin, B.; Comba, P.; Ryde,
U. Chem. Commun. 2014, 50, 262−282. (b) Kumar, S.; Faponle, A. S.;
Barman, P.; Vardhaman, A. K.; Sastri, C. V.; Kumar, D.; de Visser, S. P.
J. Am. Chem. Soc. 2014, 136, 17102−17115. (c) Vardhaman, A. K.;
Barman, P.; Kumar, S.; Sastri, C. V.; Kumar, D.; de Visser, S. P. Angew.
Chem., Int. Ed. 2013, 52, 12288−12292.
REFERENCES
■
(1) (a) Solomon, E. I.; Brunold, T. C.; Davis, M. I.; Kemsley, J. N.;
Lee, S. K.; Lehnert, N.; Neese, F.; Skulan, A. J.; Yang, Y. S.; Zhou, J.
Chem. Rev. 2000, 100, 235−349. (b) Bugg, T. D. H. Curr. Opin. Chem.
Biol. 2001, 5, 550−555. (c) Costas, M.; Mehn, M. P.; Jensen, M. P.;
Que, L., Jr. Chem. Rev. 2004, 104, 939−986. (d) Bruijnincx, P. C. A.;
van Koten, G.; Klein Gebbink, R. J. M. Chem. Soc. Rev. 2008, 37,
2716−2744. (e) Bugg, T. D. H.; Ramaswamy, S. Curr. Opin. Chem.
Biol. 2008, 12, 134−140. (f) Abu-Omar, M. M.; Loaiza, A.; Hontzeas,
(14) Frisch, M. J.; et al. Gaussian 09, Revision C.01; Gaussian, Inc:
Wallingford, CT. 2010.
(15) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 1372−1377. (b) Lee,
C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B: Condens. Matter Mater.
Phys. 1988, 37, 785−789. (c) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J.
Chem. Phys. 1971, 54, 724−728. (d) McLean, A. D.; Chandler, G. S. J.
Chem. Phys. 1980, 72, 5639−5648.
M
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX