Journal of Materials Chemistry C
Paper
4 H. Zhou, X. Zeng, A. Li, W. Zhou, L. Tang, W. Hu, Q. Fan,
X. Meng, H. Deng, L. Duan, Y. Li, Z. Deng, X. Hong and
Y. Xiao, Nat. Commun., 2020, 11, 6183.
relationship and obtain high-efficiency deep-red materials and
OLEDs.
5 S. Zhu, Z. Hu, R. Tian, B. C. Yung, Q. Yang, S. Zhao, D. O.
Kiesewetter, G. Niu, H. Sun, A. L. Antaris and X. Chen, Adv.
Mater., 2018, 30, 1802546.
6 F. Ni, N. Li, L. Zhan and C. Yang, Adv. Opt. Mater., 2020,
8, 1902187.
7 N. R. Paisley, C. M. Tonge and Z. M. Hudson, Front. Chem.,
2020, 8, 229.
8 D. Wang, M. M. S. Lee, G. Shan, R. T. K. Kwok, J. W. Y. Lam,
H. Su, Y. Cai and B. Z. Tang, Adv. Mater., 2018, 30, 1802105.
9 S. Koyama, Y. Inaba, M. Kasano and T. Murata, IEEE Trans.
Electron Devices, 2008, 55, 754–759.
Conclusions
In summary, two pairs of isomers of trans-PyCNTPA/cis-PyCNTPA
and trans-PyPTPA/cis-PyPTPA adopting the same TPA donor and
two different kinds of electron acceptors (PQP and PQCN) with
different donor connecting strategies were designed and synthe-
sized. Two model compounds trans-PyCNDPA and trans-PyPDPA
using DPA as the donor were also obtained. By manipulating the
substitution position of the donor and electron-withdrawing
strength of the acceptor, the emission colors are facilely shifted
from the orange-red (trans-PyPTPA/cis-PyPTPA/trans-PyPDPA) to
deep-red region (trans-PyCNTPA/cis-PyCNTPA/trans-PyCNDPA).
The co-acceptor CN unit is crucial to obtain TADF features. The
cis-PyCNTPA, trans-PyCNTPA and trans-PyCNDPA all manifested
smaller DEST than cis-PyPTPA, trans-PyPTPA and trans-PyPDPA to
ensure the efficient RISC process from the triplet excited state to
the singlet excited state. The experimental data and theoretical
calculations all indicate enhanced FPLs values in trans-isomers,
that is, 87% for trans-PyCNTPA, 83% for trans-PyCNDPA, 81% for
trans-PyPTPA and 78% for trans-PyPDPA, which are remarkably
higher than those of cis-PyCNTPA (19%) and cis-PyPTPA (12%).
The trans-configuration can effectively hinder the energy loss via
nonradiative decay paths and result in higher efficiency. The
TADF-OLED based on trans-PyCNTPA realizes the state-of-the-art
device performance with a high EQE of 15.5% and the electro-
luminescent peak of 668 nm in the deep-red region. These
findings would provide meaningful instructions to achieve highly
efficient red TADF emitters by isomeric modulation for OLED
investigation and applications.
10 B. Stender, S. F. Volker, C. Lambert and J. Pflaum, Adv.
Mater., 2013, 25, 2943–2947.
´
11 D.-H. Kim, A. D’Aleo, X.-K. Chen, A. D. S. Sandanayaka,
D. Yao, L. Zhao, T. Komino, E. Zaborova, G. Canard,
´
Y. Tsuchiya, E. Choi, J. W. Wu, F. Fages, J.-L. Bredas, J.-C.
Ribierre and C. Adachi, Nat. Photonics, 2018, 12, 98–104.
12 H. Chen, L. Sun, G.-D. Li and X. Zou, Chem. Mater., 2018, 30,
2018–2027.
13 H. U. Kim, S. Sohn, W. Choi, M. Kim, S. U. Ryu, T. Park,
S. Jung and K. S. Bejoymohandas, J. Mater. Chem. C, 2018, 6,
10640–10658.
14 J. X. Chen, W. W. Tao, W. C. Chen, Y. F. Xiao, K. Wang,
C. Cao, J. Yu, S. Li, F. X. Geng, C. Adachi, C. S. Lee and
X. H. Zhang, Angew. Chem., Int. Ed., 2019, 58, 14660–14665.
15 W. Zeng, H. Y. Lai, W. K. Lee, M. Jiao, Y. J. Shiu, C. Zhong,
S. Gong, T. Zhou, G. Xie, M. Sarma, K. T. Wong, C. C. Wu
and C. Yang, Adv. Mater., 2018, 30, 1704961.
16 U. Balijapalli, R. Nagata, N. Yamada, H. Nakanotani,
M. Tanaka, A. D’Aleo, V. Placide, M. Mamada, Y. Tsuchiya
and C. Adachi, Angew. Chem., Int. Ed., 2021, 60, 8477–8482.
17 Y. L. Zhang, Q. Ran, Q. Wang, Y. Liu, C. Hanisch, S. Reineke,
J. Fan and L. S. Liao, Adv. Mater., 2019, 31, 1902368.
18 J. H. Kim, J. H. Yun and J. Y. Lee, Adv. Opt. Mater., 2018,
6, 1800255.
Conflicts of interest
There are no conflicts to declare.
19 F.-M. Xie, X.-Y. Zeng, J.-X. Zhou, Z.-D. An, W. Wang, Y.-Q. Li,
X.-H. Zhang and J.-X. Tang, J. Mater. Chem. C, 2020, 8,
15728–15734.
20 K. Sun, D. Liu, W. Tian, F. Gu, W. Wang, Z. Cai, W. Jiang
and Y. Sun, J. Mater. Chem. C, 2020, 8, 11850–11859.
21 S. Kothavale, W. J. Chung and J. Y. Lee, J. Mater. Chem. C,
2021, 9, 528–536.
22 J. Jin, W. Wang, P. Xue, Q. Yang, H. Jiang, Y. Tao, C. Zheng,
G. Xie, W. Huang and R. Chen, J. Mater. Chem. C, 2021, 9,
2291–2297.
23 X. Gong, P. Li, Y. H. Huang, C. Y. Wang, C. H. Lu, W. K. Lee,
C. Zhong, Z. Chen, W. Ning, C. C. Wu, S. Gong and C. Yang,
Adv. Funct. Mater., 2020, 30, 1908839.
Acknowledgements
This research is supported by the National Natural Science
Foundation of China (91833304, 21774047, and 22075100), the
Open Fund of the State Key Laboratory of Luminescent Materials
and Devices (South China University of Technology, 2021-skllmd)
and the Fundamental Research Funds for the Central Universities.
Notes and references
1 D. Wu, L. Chen, W. Lee, G. Ko, J. Yin and J. Yoon, Coord.
Chem. Rev., 2018, 354, 74–97.
24 J. Jiang, X. Li, M. Hanif, J. Zhou, D. Hu, S. Su, Z. Xie, Y. Gao,
B. Yang and Y. Ma, J. Mater. Chem. C, 2017, 5, 11053–11058.
25 H. Kaji, H. Suzuki, T. Fukushima, K. Shizu, K. Suzuki,
S. Kubo, T. Komino, H. Oiwa, F. Suzuki, A. Wakamiya,
Y. Murata and C. Adachi, Nat. Commun., 2015, 6, 8476.
2 L. Yuan, W. Lin, K. Zheng, L. He and W. Huang, Chem. Soc.
Rev., 2013, 42, 622–661.
3 S. Qi, S. Kim, V. N. Nguyen, Y. Kim, G. Niu, G. Kim, S. J. Kim,
S. Park and J. Yoon, ACS Appl. Mater. Interfaces, 2020, 12,
51293–51301.
7398 | J. Mater. Chem. C, 2021, 9, 7392–7399
This journal is © The Royal Society of Chemistry 2021