Article
Biochemistry, Vol. 49, No. 43, 2010 9317
of the 4-hydroxyphenylacetate 3-monooxygenase from Thermus ther-
mophilus HB8. J. Biol. Chem. 282, 33107–33117.
45. Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007) MEGA4:
Molecular Evolutionary Genetics Analysis (MEGA) software version
4.0. Mol. Biol. Evol. 24, 1596–1599.
46. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., and
Wheeler, D. L. (2008) GenBank. Nucleic Acids Res. 36, D25–D30.
47. Timmons, S. C., and Thorson, J. S. (2008) Increasing carbohydrate
diversity via amine oxidation: Aminosugar, hydroxyaminosugar,
nitrososugar, and nitrosugar biosynthesis in bacteria. Curr. Opin.
Chem. Biol. 12, 297–305.
48. Chow, Y. L., Chen, S. C., and Mojelsky, T. (1973) Nitrosamine
photoaddition to norbornene and the mechanism of nitrosoalkane
cleavage. J. Chem. Soc., Chem. Commun., 827–828.
49. Holm, L., Kaariainen, S., Rosenstrom, P., and Schenkel, A. (2008)
Searching protein structure databases with DaliLite v.3. Bioinfor-
matics 24, 2780–2781.
26. Webb, B. N., Ballinger, J. W., Kim, E., Belchik, S. M., Lam, K. S.,
Youn, B., Nissen, M. S., Xun, L., and Kang, C. (2010) Characteriza-
tion of chlorophenol 4-monooxygenase (TftD) and NADH:FAD
oxidoreductase (TftC) of Burkholderia cepacia AC1100. J. Biol. Chem.
285, 2014–2027.
27. Dresen, C., Lin, L. Y., D’Angelo, I., Tocheva, E. I., Strynadka, N.,
and Eltis, L. D. (2010) A flavin-dependent monooxygenase from
Mycobacterium tuberculosis involved in cholesterol catabolism.
J. Biol. Chem. 285, 22264–22275.
28. Ballou, D. P., Entsch, B., and Cole, L. J. (2005) Dynamics involved in
catalysis by single-component and two-component flavin-dependent
aromatic hydroxylases. Biochem. Biophys. Res. Commun. 338, 590–
598.
29. Sucharitakul, J., Chaiyen, P., Entsch, B., and Ballou, D. P. (2006)
Kinetic mechanisms of the oxygenase from a two-component enzyme,
p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii
J. Biol. Chem. 281, 17044–17053.
50. Gatti, D. L., Entsch, B., Ballou, D. P., and Ludwig, M. L. (1996) pH-
dependent structural changes in the active site of p-hydroxybenzoate
hydroxylase point to the importance of proton and water movements
during catalysis. Biochemistry 35, 567–578.
30. Chen, H., Thomas, M. G., Hubbard, B. K., Losey, H. C., Walsh,
C. T., and Burkart, M. D. (2000) Deoxysugars in glycopeptide
antibiotics: Enzymatic synthesis of TDP-L-epivancosamine in chloro-
eremomycin biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 97, 11942–
11947.
31. Takahashi, H., Liu, Y. N., and Liu, H. W. (2006) A two-stage one-pot
enzymatic synthesis of TDP-L-mycarose from thymidine and glucose-
1-phosphate. J. Am. Chem. Soc. 128, 1432–1433.
32. Romana, L. K., Santiago, F. S., and Reeves, P. R. (1991) High level
expression and purification of dthymidine diphospho-D-glucose 4,6-
51. Lindqvist, Y., Koskiniemi, H., Jansson, A., Sandalova, T., Schnell,
R., Liu, Z., Mantsala, P., Niemi, J., and Schneider, G. (2009)
Structural basis for substrate recognition and specificity in aklavi-
none-11-hydroxylase from rhodomycin biosynthesis. J. Mol. Biol.
393, 966–977.
52. McCulloch, K. M., Mukherjee, T., Begley, T. P., and Ealick, S. E.
(2009) Structure of the PLP degradative enzyme 2-methyl-3-hydro-
xypyridine-5-carboxylic acid oxygenase from Mesorhizobium loti
MAFF303099 and its mechanistic implications. Biochemistry 48,
4139–4149.
dehydratase (rfbB) from Salmonella serovar typhimurium LT2. Bio-
chem. Biophys. Res. Commun. 174, 846–852.
53. Johnson, K. A. (2008) Role of induced fit in enzyme specificity:
A molecular forward/reverse switch. J. Biol. Chem. 283, 26297–26301.
54. Weikl, T. R., and von Deuster, C. (2009) Selected-fit versus induced-
fit protein binding: Kinetic differences and mutational analysis.
Proteins 75, 104–110.
33. Otwinowski, Z., and Minor, W. (1997) Processing of X-ray diffraction
data collected in oscillation mode. Methods Enzymol. 276, 307–326.
34. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D.,
Storoni, L. C., and Read, R. J. (2007) Phaser crystallographic soft-
ware. J. Appl. Crystallogr. 40, 658–674.
55. Massey, V. (1994) Activation of Molecular Oxygen by Flavins and
Flavoproteins. J. Biol. Chem. 269, 22459–22462.
35. Pike, A. C. W., Hozjan, V., Smee, C., Niesen, F. H., Kavanagh, K. L.,
Umeano, C., Turnbull, A. P., Von Delft, F., Weigelt, J., Edwards, A.,
Arrowsmith, C. H., Sundstrom, M., and Oppermann, U. (2010)
Crystal structure of human short-branched chain acyl-coA dehydro-
genase. Manuscript being prepared for publication.
36. McRee, D. E. (1999) XtalView/Xfit: A versatile program for manip-
ulating atomic coordinates and electron density. J. Struct. Biol. 125,
156–165.
37. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P.,
Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M.,
Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren,
G. L. (1998) Crystallography & NMR system: A new software suite
for macromolecular structure determination. Acta Crystallogr. D54,
905–921.
38. DeLano, W. L. (2002) The PyMOL Molecular Graphics System,
DeLano Scientific, San Carlos, CA.
39. Kraulis, P. J. (1991) MOLSCRIPT: A program to produce both
detailed and schematic plots of protein structures. J. Appl. Crystal-
logr. 24, 946–950.
40. Merritt, E. A., and Murphy, M. E. (1994) Raster3D Version 2.0.
A program for photorealistic molecular graphics. Acta Crystallogr.
D50, 869–873.
41. Kleywegt, G. J. (2007) Crystallographic refinement of ligand com-
plexes. Acta Crystallogr. D63, 94–100.
56. Bruice, T. C. (1984) Oxygen-flavin chemistry. Isr. J. Chem. 24, 54–61.
57. Mattevi, A. (2006) To be or not to be an oxidase: Challenging the
oxygen reactivity of flavoenzymes. Trends Biochem. Sci. 31, 276–283.
58. Djordjevic, S., Pace, C. P., Stankovich, M. T., and Kim, J. J. (1995)
Three-dimensional structure of butyryl-coA dehydrogenase from
Megasphaera elsdenii. Biochemistry 34, 2163–2171.
59. Kim, J. J., Wang, M., and Paschke, R. (1993) Crystal structures of
medium-chain acyl-coA dehydrogenase from pig liver mitochondria
with and without substrate. Proc. Natl. Acad. Sci. U.S.A. 90, 7523–
7527.
60. Satoh, A., Nakajima, Y., Miyahara, I., Hirotsu, K., Tanaka, T.,
Nishina, Y., Shiga, K., Tamaoki, H., Setoyama, C., and Miura, R.
(2003) Structure of the transition state analog of medium-chain acyl-
CoA dehydrogenase. Crystallographic and molecular orbital studies
on the charge-transfer complex of medium-chain acyl-CoA dehydro-
genase with 3-thiaoctanoyl-CoA. J. Biochem. 134, 297–304.
61. Battaile, K. P., Molin-Case, J., Paschke, R., Wang, M., Bennett, D.,
Vockley, J., and Kim, J. J. (2002) Crystal structure of rat short chain
acyl-CoA dehydrogenase complexed with acetoacetyl-CoA: Comparison
with other acyl-CoA dehydrogenases. J. Biol. Chem. 277, 12200–12207.
62. Chang, C., Skarina, T., Kagan, O., Savchenko, A., Edwards, A. M.,
and Joachimiak, A. (2010) Crystal structure of 3-HSA hydroxylase,
oxygenase from Rhodococcus sp. RHA1. Manuscript being prepared
for publication.
42. Saitou, N., and Nei, M. (1987) The neighbor-joining method: A new
method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.
43. Felsenstein, J. (1985) Confidence limits on phylogenies: An approach
using the bootstrap. Evolution 39, 783–791.
44. Zuckerkandl, E., and Pauling, L. (1965) Evolutionary divergence and
convergence in proteins. In Evolving Genes and Proteins (Bryson, V.,
and Vogel, H. J., Eds.) pp 97-166, Academic Press, New York.
63. Tan, K., Skarina, T., Kagen, O., Savchenko, A., Edwards, A., and
Joachimiak, A. (2010) The crystal structure of a putative hydroxylase
from Rhodococcus sp. RHA1. Manuscript being prepared for publication.
64. Nagpal, A., Valley, M. P., Fitzpatrick, P. F., and Orville, A. M. (2006)
Crystal structures of nitroalkane oxidase: Insights into the reaction
mechanism from a covalent complex of the flavoenzyme trapped
during turnover. Biochemistry 45, 1138–1150.