the NMR of diborane 3 are observed in the presence of chloride,
bromide and iodide anions indicating that fluoride anion complexa-
tion is infinitely selective. As previously proposed, the size of the
binding pocket provided by this bidentate borane can be held
responsible for this phenomenon.10 Incremental addition of fluo-
ride anions to a solution of 3 leads to a steady and linear decrease
of the absorbance at 363 nm which reaches the baseline after a total
addition of exactly one equivalent (Fig. 3). Further addition of
fluoride anions does not lead to additional perturbation of the
spectrum. These observations reflect the formation of a 1 : 1
complex whose stability constant exceeds the range measurable by
direct titration. In order to evaluate the stability constant of this
complex in THF, a titration experiment in the presence of a
competing fluoride acceptor was designed. Since triarylboranes
have been shown to complex fluoride anions,7 trimesitylborane
(Mes3B) was chosen as a competing fluoride acceptor. As
determined by a UV-Vis titration experiment, Mes3B complexes
fluoride anions with a binding constant of 3.3(0.4) 3 105 M21
which falls within the range established for other monofunctional
borane receptors.7 Remarkably, addition of fluoride anion to a
solution containing 3 and over twelve equivalents of Mes3B
resulted in the essentially quantitative formation of [3·m2-F]2
therefore indicating that 3 possesses a fluoride binding constant of
at least 5 3 109 M21. Moreover, addition of water does not lead to
decomplexation of the fluoride anion as typically observed for
fluoride adducts of monofunctional boranes.7c This difference
substantiates the chelating ability of 3 which leads to the formation
of a thermodynamically more stable fluoride complex. Finally, we
note [3·m2-F]2 can be converted back into 3 via treatment with
B(C6F5)3.
In conclusion, we report the synthesis of a colorimetric fluoride
sensor whose molecular recognition unit is a bidentate Lewis acidic
borane. The charge neutrality of this sensor as well as the short
space available between the boron centres makes this sensor highly
selective for fluoride. Finally, by virtue of its bidentate nature, the
fluoride association is remarkably high and by far exceeds that
measured for monofunctional borane receptors.
Support from the Robert A. Welch Foundation (Grant A-1423)
and the National Science Foundation (CHE-0094264) is gratefully
acknowledged. We thank Lisa Pérez for her help with the
calculations.
Notes and references
crystallographic data in .cif or other electronic format.
1 (a) R. Martínez-Máñez and F. Sancenón, Chem. Rev., 2003, 103, 4419;
(b) B. Valeur and I. Leray, Coord. Chem. Rev., 2000, 205, 3; (c) P. A.
Gale, Coord. Chem. Rev., 2001, 213, 79; (d) A. P. Davis and R. S.
Wareham, Angew. Chem. Int. Ed., 1999, 38, 2978; (e) P. D. Beer and P.
A. Gale, Angew. Chem. Int. Ed., 2001, 40, 486; (f) F. P. Schmidtchen
and M. Berger, Chem. Rev., 1997, 97, 1515.
2 D. Briancon, Rev. Rheum., 1997, 64, 78–81.
3 S. Matuso, K. Kiyomiya and M. Kurebe, Arch. Toxicol., 1998, 72,
798–806.
4 (a) H. Sohn, S. Létant, M. J. Sailor and W. C. Trogler, J. Am. Chem.
Soc., 2000, 122, 5399; (b) S.-W. Zhang and T. M. Swager, J. Am. Chem.
Soc., 2003, 125, 3420.
5 For some recent examples, see: (a) J. Y. Lee, E. J. Cho, S. Mukamel and
K. C. Nam, J. Org. Chem., 2004, 69, 943; (b) E. J. Cho, J. W. Moon, S.
W. Ko, J. Y. Lee, S. K. Kim, J. Yoon and K. C. Nam, J. Am. Chem. Soc.,
2003, 125, 12376–12377; (c) T. Mizuno, W.-H. Wei, L. R. Eller and J.
L. Sessler, J. Am. Chem. Soc., 2002, 124, 1134–1135; (d) C. J. Woods,
S. Camiolo, M. E. Light, S. J. Coles, M. B. Hursthouse, M. A. King, P.
A. Gale and J. W. Essex, J. Am. Chem. Soc., 2002, 124, 8644–8652.
6 (a) C. Dusemund, K. R. A. S. Sandanayake and S. Shinkai, Chem.
Commun., 1995, 333; (b) H. Yamamoto, A. Ori, K. Ueda, C. Dusemund
and S. Shinkai, Chem. Commun., 1996, 407; (c) C. R. Cooper, N.
Spencer and T. D. James, Chem. Commun., 1998, 1365and references
therein (d) M. Nicolas, B. Fabre and J. Simonet, Chem. Commun., 1999,
1881; (e) S. Yamaguchi, S. Akiyama and K. Tamao, J. Am. Chem. Soc.,
2000, 122, 6793.
Fig. 2 Structure of the borate anion in [3·m2-F]2 (50% ellipsoid). H atoms
omitted for clarity. Selected bond lengths [Å] and angles [°] F–B(2)
1.585(5) F–B(1) 1.633(5), B(1)–C(1) 1.607(6), B(1)–C(11) 1.626(6), B(1)–
C(21) 1.641(6), B(2)–C(8) 1.604(6), B(2)–C(41) 1.609(6), B(2)–C(31)
1.621(6), B(2)–F–B(1) 126.0(3), C(1)–B(1)–C(11) 112.8(3), C(1)–B(1)–
C(21) 116.5(3), C(11)–B(1)–C(21) 118.5(3), C(8)–B(2)–C(41) 115.8(3),
C(8)–B(2)–C(31) 114.0(3), C(41)–B(2)–C(31) 111.4(3).
7 (a) S. Yamaguchi, S. Akiyama and K. Tamao, J. Am. Chem. Soc., 2000,
122, 6335; (b) S. Yamaguchi, T. Shirasaka and K. Tamao, Org. Lett.,
2000, 2, 4129; (c) S. Yamaguchi, S. Akiyama and K. Tamao, J. Am.
Chem. Soc., 2001, 123, 11372; (d) S. Yamaguchi, T. Shirasaka, S.
Akiyama and K. Tamao, J. Am. Chem. Soc., 2002, 124, 8816; (e) Y.
Kubo, M. Yamamoto, M. Ikeda, M. Takeuchi, S. Shinkai, S. Yamaguchi
and K. Tamao, Angew. Chem. Int. Ed., 2003, 42, 2036.
8 F. P. Gabbaï, Angew. Chem. Int. Ed., 2003, 42, 2218; W. E. Piers, G. J.
Irvine and V. C. Williams, Eur. J. Inorg. Chem., 2000, 2131; E. Y. -X.
Chen and T. J. Marks, Chem. Rev., 2000, 100, 1391.
9 V. C. Williams, W. E. Piers, W. Clegg, M. R. J. Elsegood, S. Collins and
T. B. Marder, J. Am. Chem. Soc., 1999, 121, 3244.
10 (a) H. E. Katz, J. Org. Chem., 1985, 50, 5027; (b) H. E. Katz, J. Am.
Chem. Soc., 1986, 108, 7640.
11 J. D. Hoefelmeyer and F. P. Gabbaï, J. Am. Chem. Soc., 2000, 122,
9054.
12 J. D. Hoefelmeyer and F. P. Gabbaï, Organometallics, 2002, 21, 982.
Fig. 3 Spectral change accompanying the formation of [3·m2-F]2 upon
addition of nBu4NF to a THF solution of 3 (5.5 3 1025 M).
C h e m . C o m m u n . , 2 0 0 4 , 1 2 8 4 – 1 2 8 5
1285