2808
S. Peña et al. / Tetrahedron Letters 54 (2013) 2806–2808
reaction involves a carboxylic acid attached to an aromatic hetero-
cycle and consequently epimerization cannot occur.17
higher yield (40%) than from 9 (12%). Aerucyclamide B was synthe-
sized in 9% overall yield from 5 via intermediate 11, and in 3% over-
all yield from 4 via intermediate 9.
First, for the synthesis of 9 by route A, bis-heterocycle 7 was
prepared in excellent yield (94%) by ethyl ester hydrolysis of 4, fol-
lowed by coupling with the N-deprotected derivative of 5 using
HBTU. Methyl ester hydrolysis of 7, and coupling with the N-
deprotected dipeptide 8, rendered 9 in moderate yield (40%). With
the purpose of investigating another route to 9 (route B), com-
pound 10 was prepared in high yield by coupling dipeptide 8 and
C-deprotected derivative of 5. N-deprotection of 10 and coupling
reaction with 6 rendered 9 in 40% yield.
Acknowledgments
This work was supported by Grants from ANII (FCE2720), CSIC
Grupos (Universidad de la República) and PEDECIBA. We thank
Universidade Estadual de Campinas (Brasil) and Professor Guiller-
mo Moyna for some HRMS analyses. The authors acknowledge a
postgraduate fellowship from ANII (Agencia Nacional de Investiga-
ción e Innovación) (Stella Peña).
For the synthesis of 11, methyl ester hydrolysis of 10, and cou-
pling with the N-deprotected derivative of 4, rendered 11 in mod-
erate yield (40%).
Supplementary data
Macrocycle 2 was obtained in poor yield (12%) by C- and N-
deprotection of 9 followed by coupling using HBTU in diluted con-
ditions (0.005 M), Scheme 4. C- and N-deprotection of the linear
precursor 11 was achieved in quantitative yield using aqueous
KOH and then HCl(g)/dioxane. Macrocyclization was performed
in diluted conditions (0.005 M) using HBTU. The desired macrocy-
cle 2, was obtained from 11 in a higher yield (40%) than from the
open intermediate 9 (12%), suggesting that the selection of the
point for macrolactam formation is relevant in this case.
The last reaction to obtain aerucyclamide B was realized using
the cyclodehydrative reagent Deoxo-Fluor. Previous studies have
demonstrated that the reactivity of Deoxo-Fluor and DAST is sim-
ilar, although Deoxo-Fluor displays increased thermal stability.18
In addition, Deng and Taunton,19 concluded that Deoxo-Fluor effi-
ciently promoted cyclodehydration of an allo-threonine amide of a
macrocycle to afford cis,cis-ceratospongamide in 88% yield. The use
of these conditions, Scheme 4, allowed us to obtain aerucyclamide
B in 67% yield and an unexpected side product in 28% yield. The 1H
NMR of this unexpected compound showed a dqd signal at
4.98 ppm with a coupling constant J = 48.3 Hz. In addition, the
13C NMR spectrum showed a signal at 89.9 ppm (d, J = 171.5 Hz),
that could be assignable to a C–F. These results and the HRMS spec-
trum prompted us to conclude that the side product is the fluorous
derivative of 2 (12). This compound was produced by the intermo-
lecular reaction between a fluoride and the activated intermediate
generated by the reaction of 2 and Deoxo-Fluor. Based on a SN2-
type mechanism, the inversion of the stereochemistry of C–F of
12 is proposed.
Elimination processes as a competition in the oxazoline synthe-
ses using DAST or Deoxo-Fluor were previously reported.20 How-
ever, to the best of our knowledge, competition between the
oxazoline and the fluorous derivative formation was not published
until now. In this case, the formation of 12 should be explained by
a loss of nucleophilicity of the b-hydroxyamide of 2. The conforma-
tion of this macrocycle, imposed by hydrogen bond formation,
would restrict the desired reaction allowing the synthesis of the
fluorous compound.
The spectroscopic data of the synthesized aerucyclamide B are
in agreement with those reported to the natural product.
In conclusion, macrocycle 2 was prepared from two open pre-
cursors 9 and 11 using two heterocycles and a dipeptide as build-
ing blocks. Macrocycle 2 formation from 11 was performed in a
Supplementary data associated with this article can be found, in
References and notes
1. (a) Singh, R. K.; Tiwari, S. P.; Rai, A. K.; Mohapatra, T. M. J. Antibiot. 2011, 64,
401; (b) Nunnery, J. K.; Mevers, E.; Gerwick, W. H. Curr. Opin. Biotechnol. 2010,
21, 787; (c) Gademann, K.; Portmann, C. Curr. Org. Chem. 2008, 12, 326.
2. Moore, R. E. J. Ind. Microbiol. 1996, 16, 134.
3. (a) Murakami, M.; Ishida, K.; Okino, T.; Okita, Y.; Matsuda, H.; Yamaguchi, K.
Tetrahedron Lett. 1995, 36, 2785; (b) Ishida, K.; Matsuda, H.; Murakami, M.;
Yamaguchi, K. Tetrahedron 1997, 53, 10281.
4. Ziemert, N.; Ishida, K.; Quillardet, P.; Bouchier, C.; Hertweck, C.; Tandeau de
Marsac, N.; Dittmann, E. Appl. Environ. Microbiol. 2008, 74, 1791.
5. (a) Portmann, C.; Blom, J. F.; Gademann, K.; Jüttner, F. J. Nat. Prod. 2008, 71,
1193; (b) Portmann, C.; Blom, J. F.; Kaiser, M.; Brun, R.; Jüttner, F.; Gademann,
K. J. Nat. Prod. 2008, 71, 1891.
6. Guzman-Martinez, A.; Lamer, R.; VanNieuwenhze, M. S. J. Am. Chem. Soc. 2007,
129, 6017.
7. Houssin, R.; Lohez, M.; Bernier, J. L.; Henichart, J. P. J. Org. Chem. 1985, 50, 2787.
8. Nakamura, M.; Shibata, T.; Nakane, K.; Nemoto, T.; Ojika, M.; Yamada, K.
Tetrahedron Lett. 1995, 36, 5059.
9. Downing, S. V.; Aguilar, E.; Meyers, A. I. J. Org. Chem. 1999, 64, 826.
10. Oxazoles. The Chemistry of Heterocyclic Compounds Part B; Taylor, E. C., Wipf, P.,
Eds.; Wiley: New Jersey, 2003. Vol. 60.
11. Abbenante, G.; Fairlie, D. P.; Gahan, L. R.; Hanson, G. R.; Pierens, G.; van den
Brenk, A. L. J. Am. Chem. Soc. 1996, 118, 10384.
12. (a) Ehrlich, A.; Heyne, H.-U.; Winter, R.; Beyermann, M.; Haber, H.; Carpino, L.
A.; Bienert, M. J. Org. Chem. 1996, 61, 8831; (b) Mink, D.; Mecozzi, S.; Rebek, J.,
Jr. Tetrahedron Lett. 1998, 39, 5709; (c) Sayyadi, N.; Skropeta, D.; Jolliffe, K. A.
Org. Lett. 2005, 7, 5497; (d) Black, R. J. G.; Dungan, V. J.; Li, R. Y. T.; Young, P. G.;
Jolliffe, K. A. Synlett 2010, 551; (e) Thompson, R. E.; Jolliffe, K. A.; Payne, R. J.
Org. Lett. 2011, 13, 680.
13. Peña, S.; Scarone, L.; Manta, E.; Stewart, L.; Yardley, V.; Croft, S.; Serra, G. Bioorg.
Med. Chem. Lett. 2012, 22, 4994.
14. Peña, S.; Scarone, L.; Medeiros, A.; Manta, E.; Comini, M.; Serra, G. Med. Chem.
Commun. 2012, 3, 1443.
15. Wipf, P.; Miller, C. P.; Venkatraman, S.; Fritch, P. C. Tetrahedron Lett. 1995, 36,
6395.
16. Phillips, A. J.; Uto, Y.; Wipf, P.; Reno, M. J.; Williams, D. R. Org. Lett. 2000, 2,
1165.
17. (a) Deng, J.; Hamada, Y.; Shioiri, T. Synthesis 1998, 627; (b) Humphrey, J.;
Chamberlin, A. R. Chem. Rev. 1997, 97, 2243.
18. (a) Phillips, A. J.; Yoshikazi, U.; Wipf, P.; Reno, M. J.; Williams, D. R. Org. Lett.
2000, 2, 1165; (b) Lal, G. S.; Pez, G. P.; Pesaresi, R. J.; Prozonic, F. M.; Cheng, H. J.
Org. Chem. 1999, 64, 7048.
19. Deng, S.; Taunton, J. J. Am. Chem. Soc. 2002, 124, 916.
20. (a) Lafargue, P.; Guenot, P.; Lellouche, J.-P. Heterocycles 1995, 41, 945; (b)
Yokokawa, F.; Shioiri, T. Tetrahedron Lett. 2002, 43, 8673; (c) Scarone, L.;
Sellanes, D.; Manta, E.; Wipf, P.; Serra, G. Heterocycles 2004, 63, 773.