The Journal of Organic Chemistry
ARTICLE
2
0h
1
-Azabicyclo[3.3.1]nonan-2-one: . A 354 mg (1.85 mmol)
Mucsi, Z.; Tsai, A.; Szori, M.; Chass, G. A.; Viskolcz, B.; Czismadia, I. G.
J. Phys. Chem. A 2007, 111, 13245–13254.
sample of 3-(3-piperidyl)propionic acid hydrochloride and 665 mg
2.67 mmol) of di-n-butyltin(IV) oxide in 1200 mL of toluene is refluxed
(
(3) (a) Pracejus, H. Chem. Ber. 1959, 92, 988. (b) Pracejus, H. Chem.
Ber. 1965, 98, 2897. (c) Pracejus, H.; Kehlen, M.; Kehlen, H.; Matschi-
ner, H. Tetrahedron 1965, 21, 2257–2270. (d) Blackburn, G. M.; Skaife,
C. J.; Kay, I. T. J. Chem. Res., Miniprint 1980, 3650–3668. Greenberg, A.;
Wu, G.; Tsai, J. C.; Chin, Y. Y. Struct. Chem. 1993, 4, 127–129.
with a DeanꢀStark trap for 16 h. The solution is concentrated to a
yellow oil with use of rotoevaporation. Flash chromatography on silica
gel with ethanol:hexanes (4:1) furnished the product (mp 79ꢀ81 °C for
20c
20g
1
racemate; lit. values 77ꢀ79 °C and 77ꢀ81 °C ). H NMR (400
(4) (a) Somayaji, V.; Brown, R. S. J. Org. Chem. 1986,
MHz, CDCl
3
) δ 1.36 (m, 1H), 1.40 (ddd, 1H), 1.51 (broad d, 1H),
51, 2676–2686. (b) Somayaji, V.; Skorey, K. I.; Brown, R. S.; Ball,
1
1
.76ꢀ1.82 (m, 2H), 2.26ꢀ2.34 (m, 3H), 2.47 (ddd, 1H), 2.82 (ddd,
13
R. G. J. Org. Chem. 1986, 51, 4866–4872. (c) Bennet, A. J.; Wang, Q. P.;
Slebocka-Tilk, H.; Somayaji, V.; Brown, R. S. J. Am. Chem. Soc. 1990,
H), 3.05 (d, 1H), 3.32 (dd, 1H), 4.12 (ddd, 1H); C NMR (100.5
) δ 20.7, 25.0, 29.8, 30.9, 33.4, 51.6, 52.9, 185.0. [The NMR
MHz, CDCl
spectra include minor contributions from pump oil: H NMR
3
112, 6383–6385. (d) Wang, Q. P.; Bennet, A. J.; Brown, R. S.;
1
Santarsiero, B. D. J. Am. Chem. Soc. 1991, 113, 5757–5765. (e) Bennet,
A. J.; Somayaji, V.; Brown, R. S.; Santarsiero, B. D. J. Am. Chem. Soc.
13
(
m, 0.83ꢀ0.89 ppm; 1.26 ppm); C NMR (29.8 ppm).]
Protonated 1-Azabicyclo[3.3.1]nonan-2-one:
Azabicyclo[3.3.1]nonan-2-one was initially protonated in 99.98%
SO or D SO with CF CO D (TFA-d) as an internal standard.
Subsequent studies were performed with H SO approximately equi-
1-
1
991, 113, 7563–7571.(f) Brown, R. S. In Greenberg, A.; Breneman,
C. M.; Liebman, J. F. The Amide Linkage: Structural Significance in
Chemistry, Biochemistry and Material Science; John Wiley & Sons: New
York, 2000: pp 85ꢀ114.
H
2
4
2
4
3
2
2
4
molar to the lactam in TFA-d as solvent (see the Supporting In-
(5) (a) Tani, K.; Stoltz, B. M. Nature 2006, 441, 731–734. (b) Ly, T.;
Krout, M.; Pham, D. K.; Tani, K.; Stoltz, B. M.; Julian, R. R. J. Am. Chem.
Soc. 2007, 129, 1864–1865.
1
formation). H NMR (400 Hz, TFA-d) δ 1.70ꢀ2.00 (m, 5H),
2
1
(
.50ꢀ2.70 (m, 2H), 2.90ꢀ3.10 (m, 2H), 3.51 (ddd, 1H), 3.61 (d,
13
(
6) (a) Greenberg, A.; Venanzi, C. A. J. Am. Chem. Soc. 1993,
15, 6951–6957. (b) Greenberg, A.; Moore, D. T.; DuBois, T. D. J.
Am. Chem. Soc. 1996, 118, 8658–8668.
7) (a) Szostak, M.; Yao, L.; Aube, J. J. Org. Chem. 2009,
H), 3.80 (broadened d, 1H), 4.05 (broadened d, 1H); C NMR
1
100.5 MHz, TFA-d) δ 20.5, 25.5, 27.5, 30.5, 34.5, 56.0, 56.5, 182.5.
Studies were also performed in triflic acid (CF SO H) as well as in 25%
Magic Acid (i.e., 4:1 fluorosulfuric acid/antimony pentafluoride).
Protonated N-Methyl-2-pyrrolidone: The lactam was dissolved
in 99.98% H SO with TFA-d added as internal standard. C NMR
TFA-d, ppm) δ 19.5, 33.1, 34.7, 57.0, 180.5. This may be compared with
the results for the neutral lactam: C NMR (CDCl
8.5, 173.9 (see the Supporting Information for these spectra).
3
3
(
74, 1869–1875. (b) Szostak, M.; Yao, L.; Aube, J. J. Am. Chem. Soc.
2
010, 132, 2078–2084. (c) Szostak, M.; Yao, L.; Day, V. W.; Powell,
1
3
2
4
D. R.; Aube, J. J. Am. Chem. Soc. 2010, 132, 8836–8837.
8) (a) Werstiuk, N. H.; Brown, R. S.; Wang, Q. Can. J. Chem. 1996,
4, 524–532. (b) Werstiuk, N. H.; Muchall, H. M.; Roy, C. D.; Ma, J.;
Brown, R. S. Can. J. Chem. 1998, 76, 672–677.
9) (a) Kirby, A. J.; Komarov, I. V.; Wothers, P. D.; Feeder, N.
(
(
13
3
) δ 16.8, 28.6, 29.8,
7
4
(
Angew. Chem., Int. Ed. 1998, 37, 785–786. (b) Kirby, A. J.; Komarov,
I. V.; Feeder, N. J. Am. Chem. Soc. 1998, 120, 7101–7102. (c) Kirby, A. J.;
Komarov, I. V.; Kowski, K.; Rademacher, P. J. Chem. Soc., Perkin Trans. 2
’
ASSOCIATED CONTENT
1
S
Supporting Information. Experimental procedures, H
b
1
999, 1313–1316.
10) Morgan, K. M.; Rawlins, M. L.; Montgomery, M. N. J. Phys. Org.
Chem. 2005, 18, 310–314.
11) Lei, Y.; Wrobleski, A. D.; Golden, J. E.; Powell, D. R.; Aube, J. J.
1
3
and C NMR spectra, total energies, full geometries, zero point
energies, and thermal corrections for all structures. This material
is available free of charge via the Internet at http://pubs.acs.org.
(
(
Am. Chem. Soc. 2005, 127, 4552–4553.
’
AUTHOR INFORMATION
(12) Boyd, D. B. In Greenberg, A.; Breneman, C. M.; Liebman, J. F.
The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and
Materials Science; John Wiley & Sons: New York, 2000; pp 337ꢀ375.
(13) Mujika, J. I.; Formoso, E.; Mercero, J. M.; Lopez, X. J. Phys.
Chem. B 2006, 110, 15000–15011.
Corresponding Author
*E-mail: art.greenberg@unh.edu.
(14) (a) Harrison, R. K.; Stein, R. L. Biochemistry 1990,
2
9, 1684–1689. (b) Liu, J.; Albers, M. W.; Chen, C. M.; Schreiber,
’
ACKNOWLEDGMENT
S. L.; Walsh, C. T. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 2304–2308. (c)
Fischer, G. Chem. Soc. Rev. 2000, 29, 119–127. (d) Cox, C.; Leckta, T.
Acc. Chem. Res. 2000, 33, 849–858. (e) Wedemeyer, W. J.; Welker, E.;
Scheraga, H. A. Biochemistry 2002, 41, 14637–14644. (f) Bhat, R.;
Wedemeyer, W. J.; Scheraga, H. A. Biochemistry 2003, 42, 5722–5728.
The authors wish to thank Professors Richard Johnson, Glen
Miller, and Sterling Tomellini, Dr. Patricia Stone Wilkinson, and
Ilia Terova for helpful discussions and suggestions.
(
2
g) Eakin, C. M.; Berman, A. J.; Miranker, A. D. Nat. Struct. Mol. Biol.
006, 13, 202–208.
’
REFERENCES
(1) (a) Dunitz, J. D.; Winkler, F. K. Acta Crystallogr., Sect. B 1975,
(15) Johansson, D. G. A.; Wallin, G.; Sandberg, A.; Macao, B.;
3
1, 251–263.(b) Wiberg, K. B. In Greenberg, A.; Breneman, C. M.;
Åqvist, J.; H €a rd, T. J. Am. Chem. Soc. 2009, 131, 9475–9477.
(16) (a) Birchall, T.; Gillespie, R. J. Can. J. Chem. 1963,
41, 2642–2649. (b) Olah, G. A.; White, A. M. Chem. Rev. 1970,
70, 561–591. Klumpp, D. A.; Rendy, R.; Zhang, Y.; Gomez, A.; McElrea,
A. Org. Lett. 2004, 6, 1789–1792.
(17) (a) Mujika, J. I.; Mercero, J. M.; Lopez, X. J. Phys. Chem. A 2003,
107, 6099–6107. (b) Mujika, J. I.; Mercero, J. M.; Lopez, X. J. Am. Chem.
Soc. 2005, 127, 4445–4453.
Liebman, J. F. In The Amide Linkage: Structural Significance in Chemistry,
Biochemistry, and Materials Science; John Wiley & Sons: New York, 2000;
pp 33ꢀ45. (c) Yamada, S. J. In Greenberg, A.; Breneman, C. M.;
Liebman, J. F. The Amide Linkage: Structural Significance in Chemistry,
Biochemistry, and Materials Science; John Wiley & Sons: New York, 2000;
pp 215ꢀ246.
(2) (a) Hall, H. K., Jr.; El-Shekeil, A. Chem. Rev. 1983, 83, 549–555.
(
b) Greenberg, A. In Liebman, J. F.; Greenberg, A. Structure and
(18) Spartan 08, 1.2.0, Wavefunction, Inc., Irvine, CA, 2008.
(19) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.;
Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.;
Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson,
Reactivity; VCH Publishers Inc.: New York, 1988; pp 139ꢀ178. (c)
Greenberg, A. In Greenberg, A.; Breneman, C. M.; Liebman, J. F. The
Amide Linkage: Structural Significance in Chemistry, Biochemistry, and
Materials Science; John Wiley & Sons: New York, 2000; pp 47ꢀ83. (d)
2
780
dx.doi.org/10.1021/jo200195a |J. Org. Chem. 2011, 76, 2770–2781